Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Theo M. de Kok is active.

Publication


Featured researches published by Theo M. de Kok.


Carcinogenesis | 2013

Dietary heme iron and the risk of colorectal cancer with specific mutations in KRAS and APC

Anne M.J. Gilsing; Fiona Fransen; Theo M. de Kok; Alexandra R. Goldbohm; Leo J. Schouten; Adriaan P. de Bruïne; Manon van Engeland; Piet A. van den Brandt; Anton F.P.M. de Goeij; Matty P. Weijenberg

Red meat intake has been linked to increased colorectal cancer (CRC) risk. Although the underlying mechanisms remain unclear, experimental studies suggest a role for dietary heme iron. Because heme iron was shown to promote specific mutations, it would be insightful to link heme iron data to CRC with mutations in key genes in an observational, population-based study. We investigated the association between dietary heme iron intake and risk of CRC with mutations in APC (adenomatous polyposis coli) and KRAS (Kirsten ras) and P53 overexpression in the Netherlands Cohort Study. After 7.3 years of follow-up, excluding the first 2.3 years due to incomplete coverage of the pathology registry and to avoid preclinical disease, adjusted hazard ratios (including adjustment for total meat) and 95% confidence intervals were calculated, using 4026 subcohort members (aged 55-69 years at baseline), 435 colon and 140 rectal cancer patients. When comparing the highest with the lowest tertile of intake, heme iron intake was associated with an increased risk of CRC harboring activating mutations in KRAS (hazard ratio = 1.71, 95% confidence interval: 1.15-2.57; P for trend = 0.03) and CRC without truncating mutations in APC (hazard ratio = 1.79, 95% confidence interval: 1.23-2.60; P for trend = 0.003). We observed a positive association between heme iron intake and the risk of CRC with activating G>A mutations in KRAS (P for trend = 0.01) and overall G>A mutations in APC (P for trend = 0.005). No associations were found with CRC harboring G>T mutations in KRAS/APC. Heme iron intake was positively associated with the risk of P53 overexpressed tumors but not with tumors without P53 overexpression (Pheterogeneity = 0.12). Heme iron intake was associated with an increased risk of colorectal tumors harboring G>A transitions in KRAS and APC and overexpression of P53. These novel findings suggest that alkylating rather than oxidative DNA-damaging mechanisms are involved in heme-induced colorectal carcinogenesis.


European Journal of Nutrition | 2008

Mechanisms of combined action of different chemopreventive dietary compounds: a review

Theo M. de Kok; Simone G. van Breda; Margaret M. Manson

Consumption of fruits and vegetables has generally been associated with a decrease in cancer incidence and cardiovascular disease. Over the years, numerous bioactive compounds have been identified that contribute to these beneficial health effects. More recently, evidence is emerging that specific combinations of phytochemicals may be far more effective in protecting against cancer than isolated compounds. Combinatorial effects have been observed where any one of the single agents is inactive. Apart from interactions among dietary micronutrients, drug–phytochemical interactions have also been observed, indicating possibilities for improved cancer therapeutic strategies. Our understanding of the molecular mechanisms underlying such synergistic effects is still limited, but it appears that different combinations of complementary modes of actions are involved. In this review, we discuss the molecular mechanisms that are likely to be involved in cancer chemoprevention and summarize the most important findings of those studies that report synergistic chemopreventive effects of dietary compounds.


Journal of Environmental Quality | 2008

When Does Nitrate Become a Risk for Humans

David S. Powlson; Tom Addiscott; Nigel Benjamin; Kenneth G. Cassman; Theo M. de Kok; Hans van Grinsven; Jean-Louis L'hirondel; Alex Avery; Chris van Kessel

Is nitrate harmful to humans? Are the current limits for nitrate concentration in drinking water justified by science? There is substantial disagreement among scientists over the interpretation of evidence on the issue. There are two main health issues: the linkage between nitrate and (i) infant methaemoglobinaemia, also known as blue baby syndrome, and (ii) cancers of the digestive tract. The evidence for nitrate as a cause of these serious diseases remains controversial. On one hand there is evidence that shows there is no clear association between nitrate in drinking water and the two main health issues with which it has been linked, and there is even evidence emerging of a possible benefit of nitrate in cardiovascular health. There is also evidence of nitrate intake giving protection against infections such as gastroenteritis. Some scientists suggest that there is sufficient evidence for increasing the permitted concentration of nitrate in drinking water without increasing risks to human health. However, subgroups within a population may be more susceptible than others to the adverse health effects of nitrate. Moreover, individuals with increased rates of endogenous formation of carcinogenic N-nitroso compounds are likely to be susceptible to the development of cancers in the digestive system. Given the lack of consensus, there is an urgent need for a comprehensive, independent study to determine whether the current nitrate limit for drinking water is scientifically justified or whether it could safely be raised.


Environmental Health Perspectives | 2013

Performance in omics analyses of blood samples in long-term storage : opportunities for the exploitation of existing biobanks in environmental health research

Dennie G. A. J. Hebels; Panagiotis Georgiadis; Hector C. Keun; Toby J. Athersuch; Paolo Vineis; Roel Vermeulen; Lützen Portengen; Ingvar A. Bergdahl; Göran Hallmans; Domenico Palli; Benedetta Bendinelli; Vittorio Krogh; Rosario Tumino; Carlotta Sacerdote; Salvatore Panico; Jos Kleinjans; Theo M. de Kok; Martyn T. Smith; Soterios A. Kyrtopoulos

Background: The suitability for omic analysis of biosamples collected in previous decades and currently stored in biobanks is unknown. Objectives: We evaluated the influence of handling and storage conditions of blood-derived biosamples on transcriptomic, epigenomic (CpG methylation), plasma metabolomic [UPLC-ToFMS (ultra performance liquid chromatography–time-of-flight mass spectrometry)], and wide-target proteomic profiles. Methods: We collected fresh blood samples without RNA preservative in heparin, EDTA, or citrate and held them at room temperature for ≤ 24 hr before fractionating them into buffy coat, erythrocytes, and plasma and freezing the fractions at –80oC or in liquid nitrogen. We developed methodology for isolating RNA from the buffy coats and conducted omic analyses. Finally, we analyzed analogous samples from the EPIC-Italy and Northern Sweden Health and Disease Study biobanks. Results: Microarray-quality RNA could be isolated from buffy coats (including most biobank samples) that had been frozen within 8 hr of blood collection by thawing the samples in RNA preservative. Different anticoagulants influenced the metabolomic, proteomic, and to a lesser extent transcriptomic profiles. Transcriptomic profiles were most affected by the delay (as little as 2 hr) before blood fractionation, whereas storage temperature had minimal impact. Effects on metabolomic and proteomic profiles were noted in samples processed ≥ 8 hr after collection, but no effects were due to storage temperature. None of the variables examined significantly influenced the epigenomic profiles. No systematic influence of time-in-storage was observed in samples stored over a period of 13–17 years. Conclusions: Most samples currently stored in biobanks are amenable to meaningful omics analysis, provided that they satisfy collection and storage criteria defined in this study.


Meat Science | 2014

The role of red and processed meat in colorectal cancer development: a perspective

Marije Oostindjer; Jan Alexander; Gro V. Amdam; Grethe Andersen; Nathan S. Bryan; Duan Chen; Denis E. Corpet; Stefaan De Smet; Lars O. Dragsted; Anna Haug; Anders Karlsson; Gijs Kleter; Theo M. de Kok; Bård Kulseng; Andrew L. Milkowski; Roy J. Martin; Anne Maria Pajari; Jan Erik Paulsen; Jana Pickova; Knut Rudi; Marianne Sødring; Douglas L. Weed; Bjørg Egelandsdal

This paper is based on a workshop held in Oslo, Norway in November 2013, in which experts discussed how to reach consensus on the healthiness of red and processed meat. Recent nutritional recommendations include reducing intake of red and processed meat to reduce cancer risk, in particular colorectal cancer (CRC). Epidemiological and mechanistic data on associations between red and processed meat intake and CRC are inconsistent and underlying mechanisms are unclear. There is a need for further studies on differences between white and red meat, between processed and whole red meat and between different types of processed meats, as potential health risks may not be the same for all products. Better biomarkers of meat intake and of cancer occurrence and updated food composition databases are required for future studies. Modifying meat composition via animal feeding and breeding, improving meat processing by alternative methods such as adding phytochemicals and improving our diets in general are strategies that need to be followed up.


Free Radical Research | 2004

In vitro and in vivo studies on oxygen free radical and DNA adduct formation in rat lung and liver during benzo[a]pyrene metabolism

Jacob J. Briedé; Roger W. L. Godschalk; Marijn T.G. Emans; Theo M. de Kok; Ebienus van Agen; Jan M. S. van Maanen; Frederik-Jan van Schooten; Jos Kleinjans

Reactive oxygen species (ROS), possibly produced during the metabolic conversion of benzo(a)pyrene (B[a]P), could be involved in B[a]P-induced genotoxicity and, eventually, carcinogenicity. Therefore, ROS formation by rat lung and liver microsomes was studied in vitro by electron spin resonance (ESR/EPR) spectrometry. B[a]P-mediated generation of ROS was detected in incubations with rat lung, but not with liver microsomes. Inhibition of cytochrome P450 (CYP450) by the non isoform-specific inhibitor SKF-525A resulted in a complete inhibition of B[a]P-dependent ROS formation, whereas ROS formation was not affected by inhibition of prostaglandin H synthase by indomethacin. Subsequently, bulky DNA adduct formation and 8-oxo-dG levels after a single oral dose of B[a]P were examined in vivo in rat lung and liver, in combination with urinary excretion of 8-oxodG. B[a]P exposure resulted in increased urinary 8-oxo-dG levels. On the contrary, 8-oxo-dG levels decreased in liver and lung after B[a]P exposure. Bulky DNA adducts reached higher levels and were more persistent in rat lung than in liver. These results indicate that ROS are generated during the CYP450 dependent metabolism of B[a]P, particularly in the rat lung, but this does not necessarily result in increased levels of oxidative DNA damage in vivo, possibly by induction of DNA repair mechanisms.


Environmental Health | 2006

Does the evidence about health risks associated with nitrate ingestion warrant an increase of the nitrate standard for drinking water

Hans van Grinsven; Mary H. Ward; Nigel Benjamin; Theo M. de Kok

Several authors have suggested that it is safe to raise the health standard for nitrate in drinking water, and save money on measures associated with nitrate pollution of drinking water resources. The major argument has been that the epidemiologic evidence for acute and chronic health effects related to drinking water nitrate at concentrations near the health standard is inconclusive. With respect to the chronic effects, the argument was motivated by the absence of evidence for adverse health effects related to ingestion of nitrate from dietary sources. An interdisciplinary discussion of these arguments led to three important observations. First, there have been only a few well-designed epidemiologic studies that evaluated ingestion of nitrate in drinking water and risk of specific cancers or adverse reproductive outcomes among potentially susceptible subgroups likely to have elevated endogenous nitrosation. Positive associations have been observed for some but not all health outcomes evaluated. Second, the epidemiologic studies of cancer do not support an association between ingestion of dietary nitrate (vegetables) and an increased risk of cancer, because intake of dietary nitrate is associated with intake of antioxidants and other beneficial phytochemicals. Third, 2–3 % of the population in Western Europe and the US could be exposed to nitrate levels in drinking water exceeding the WHO standard of 50 mg/l nitrate, particularly those living in rural areas. The health losses due to this exposure cannot be estimated. Therefore, we conclude that it is not possible to weigh the costs and benefits from changing the nitrate standard for drinking water and groundwater resources by considering the potential consequences for human health and by considering the potential savings due to reduced costs for nitrate removal and prevention of nitrate pollution.


Molecular Nutrition & Food Research | 2015

Nitrate and nitrite in the diet: How to assess their benefit and risk for human health

Michael Habermeyer; Angelika Roth; Sabine Guth; Patrick Diel; Karl-Heinz Engel; Bernd Epe; Peter Fürst; Volker Heinz; Hans-Ulrich Humpf; Hans-Georg Joost; Dietrich Knorr; Theo M. de Kok; Sabine E. Kulling; Alfonso Lampen; Doris Marko; Gerhard Rechkemmer; Ivonne M. C. M. Rietjens; Richard H. Stadler; Stefan Vieths; Rudi F. Vogel; Pablo Steinberg; Gerhard Eisenbrand

Nitrate is a natural constituent of the human diet and an approved food additive. It can be partially converted to nitrogen monoxide, which induces vasodilation and thereby decreases blood pressure. This effect is associated with a reduced risk regarding cardiovascular disease, myocardial infarction, and stroke. Moreover, dietary nitrate has been associated with beneficial effects in patients with gastric ulcer, renal failure, or metabolic syndrome. Recent studies indicate that such beneficial health effects due to dietary nitrate may be achievable at intake levels resulting from the daily consumption of nitrate-rich vegetables. N-nitroso compounds are endogenously formed in humans. However, their relevance for human health has not been adequately explored up to now. Nitrate and nitrite are per se not carcinogenic, but under conditions that result in endogenous nitrosation, it cannot be excluded that ingested nitrate and nitrite may lead to an increased cancer risk and may probably be carcinogenic to humans. In this review, the known beneficial and detrimental health effects related to dietary nitrate/nitrite intake are described and the identified gaps in knowledge as well as the research needs required to perform a reliable benefit/risk assessment in terms of long-term human health consequences due to dietary nitrate/nitrite intake are presented.


Molecular Nutrition & Food Research | 2010

Antioxidative and antigenotoxic properties of vegetables and dietary phytochemicals: The value of genomics biomarkers in molecular epidemiology

Theo M. de Kok; Pim de Waard; Lonneke C. Wilms; Simone G. van Breda

There is considerable evidence that consumption of fruits and vegetables may contribute to the prevention of cancer. It is however remarkable that evidence for such a preventive action arising from mechanistic studies is becoming stronger, whereas results of some recent prospective studies are less convincing. This apparent discrepancy may be overcome, or at least understood, by introducing molecular markers in future epidemiological studies, taking modulation of molecular processes as well as genetic variability in human populations into account. Both human and animal studies demonstrated that vegetable intake modulates gene expression in the gastrointestinal tract of many genes involved in biological pathways in favor of cancer risk prevention. Gene sets identified in this type of studies can be further evaluated, linked to the biological effects of phytochemicals and developed into biomarkers for larger human studies. Human dietary intervention studies have demonstrated that, apart from target tissues, also peripheral lymphocytes can be used for biomonitoring of chemopreventive effects. Transcriptomic responses and metabolite profiling may link phenotypic markers of preventive effects to specific molecular processes. The use of genomics techniques appears to be a promising approach to establish mechanistic pathways involved in chemoprevention by phytochemicals, particularly when genetic variability is taken into account.


Environmental Health | 2010

Estimation of incidence and social cost of colon cancer due to nitrate in drinking water in the EU: a tentative cost-benefit assessment

Hans van Grinsven; Ari Rabl; Theo M. de Kok

BackgroundPresently, health costs associated with nitrate in drinking water are uncertain and not quantified. This limits proper evaluation of current policies and measures for solving or preventing nitrate pollution of drinking water resources. The cost for society associated with nitrate is also relevant for integrated assessment of EU nitrogen policies taking a perspective of welfare optimization. The overarching question is at which nitrogen mitigation level the social cost of measures, including their consequence for availability of food and energy, matches the social benefit of these measures for human health and biodiversity.MethodsEpidemiological studies suggest colon cancer to be possibly associated with nitrate in drinking water. In this study risk increase for colon cancer is based on a case-control study for Iowa, which is extrapolated to assess the social cost for 11 EU member states by using data on cancer incidence, nitrogen leaching and drinking water supply in the EU. Health costs are provisionally compared with nitrate mitigation costs and social benefits of fertilizer use.ResultsFor above median meat consumption the risk of colon cancer doubles when exposed to drinking water exceeding 25 mg/L of nitrate (NO3) for more than ten years. We estimate the associated increase of incidence of colon cancer from nitrate contamination of groundwater based drinking water in EU11 at 3%. This corresponds to a population-averaged health loss of 2.9 euro per capita or 0.7 euro per kg of nitrate-N leaching from fertilizer.ConclusionsOur cost estimates indicate that current measures to prevent exceedance of 50 mg/L NO3 are probably beneficial for society and that a stricter nitrate limit and additional measures may be justified. The present assessment of social cost is uncertain because it considers only one type of cancer, it is based on one epidemiological study in Iowa, and involves various assumptions regarding exposure. Our results highlight the need for improved epidemiological studies.

Collaboration


Dive into the Theo M. de Kok's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paolo Vineis

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge