Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Theodora Petanidou is active.

Publication


Featured researches published by Theodora Petanidou.


Ecological Monographs | 2008

MEASURING BEE DIVERSITY IN DIFFERENT EUROPEAN HABITATS AND BIOGEOGRAPHICAL REGIONS

Catrin Westphal; Riccardo Bommarco; Gabriel Carré; Ellen Lamborn; Nicolas Morison; Theodora Petanidou; Simon G. Potts; Stuart Roberts; Hajnalka Szentgyörgyi; Thomas Tscheulin; Bernard E. Vaissière; Michal Woyciechowski; Jacobus C. Biesmeijer; William E. Kunin; Josef Settele; Ingolf Steffan-Dewenter

Bee pollinators are currently recorded with many different sampling methods. However, the relative performances of these methods have not been systematically evaluated and compared. In response to the strong need to record ongoing shifts in pollinator diversity and abundance, global and regional pollinator initiatives must adopt standardized sampling protocols when developing large-scale and long-term monitoring schemes. We systematically evaluated the performance of six sampling methods (observation plots, pan traps, standardized and variable transect walks, trap nests with reed internodes or paper tubes) that are commonly used across a wide range of geographical regions in Europe and in two habitat types (agricultural and seminatural). We focused on bees since they represent the most important pollinator group worldwide. Several characteristics of the methods were considered in order to evaluate their performance in assessing bee diversity: sample coverage, observed species richness, species richness estimators, collector biases (identified by subunit-based rarefaction curves), species composition of the samples, and the indication of overall bee species richness (estimated from combined total samples). The most efficient method in all geographical regions, in both the agricultural and seminatural habitats, was the pan trap method. It had the highest sample coverage, collected the highest number of species, showed negligible collector bias, detected similar species as the transect methods, and was the best indicator of overall bee species richness. The transect methods were also relatively efficient, but they had a significant collector bias. The observation plots showed poor performance. As trap nests are restricted to cavity-nesting bee species, they had a naturally low sample coverage. However, both trap nest types detected additional species that were not recorded by any of the other methods. For large-scale and long-term monitoring schemes with surveyors with different experience levels, we recommend pan traps as the most efficient, unbiased, and cost-effective method for sampling bee diversity. Trap nests with reed internodes could be used as a complementary sampling method to maximize the numbers of collected species. Transect walks are the principal method for detailed studies focusing on plant-pollinator associations. Moreover, they can be used in monitoring schemes after training the surveyors to standardize their collection skills.


Ecology Letters | 2008

Long-term observation of a pollination network: fluctuation in species and interactions, relative invariance of network structure and implications for estimates of specialization.

Theodora Petanidou; Athanasios S. Kallimanis; Joseph Tzanopoulos; Stefanos P. Sgardelis; John D. Pantis

We analysed the dynamics of a plant-pollinator interaction network of a scrub community surveyed over four consecutive years. Species composition within the annual networks showed high temporal variation. Temporal dynamics were also evident in the topology of the network, as interactions among plants and pollinators did not remain constant through time. This change involved both the number and the identity of interacting partners. Strikingly, few species and interactions were consistently present in all four annual plant-pollinator networks (53% of the plant species, 21% of the pollinator species and 4.9% of the interactions). The high turnover in species-to-species interactions was mainly the effect of species turnover (c. 70% in pairwise comparisons among years), and less the effect of species flexibility to interact with new partners (c. 30%). We conclude that specialization in plant-pollinator interactions might be highly overestimated when measured over short periods of time. This is because many plant or pollinator species appear as specialists in 1 year, but tend to be generalists or to interact with different partner species when observed in other years. The high temporal plasticity in species composition and interaction identity coupled with the low variation in network structure properties (e.g. degree centralization, connectance, nestedness, average distance and network diameter) imply (i) that tight and specialized coevolution might not be as important as previously suggested and (ii) that plant-pollinator interaction networks might be less prone to detrimental effects of disturbance than previously thought. We suggest that this may be due to the opportunistic nature of plant and animal species regarding the available partner resources they depend upon at any particular time.


Biological Reviews | 2010

Multiple stressors on biotic interactions: how climate change and alien species interact to affect pollination

Oliver Schweiger; Jacobus C. Biesmeijer; Riccardo Bommarco; Thomas Hickler; Philip E. Hulme; Stefan Klotz; Ingolf Kühn; Mari Moora; Anders Nielsen; Ralf Ohlemüller; Theodora Petanidou; Simon G. Potts; Petr Pyšek; Jane C. Stout; Martin T. Sykes; Thomas Tscheulin; Montserrat Vilà; Gian-Reto Walther; Catrin Westphal; Marten Winter; Martin Zobel; Josef Settele

Global change may substantially affect biodiversity and ecosystem functioning but little is known about its effects on essential biotic interactions. Since different environmental drivers rarely act in isolation it is important to consider interactive effects. Here, we focus on how two key drivers of anthropogenic environmental change, climate change and the introduction of alien species, affect plant–pollinator interactions. Based on a literature survey we identify climatically sensitive aspects of species interactions, assess potential effects of climate change on these mechanisms, and derive hypotheses that may form the basis of future research. We find that both climate change and alien species will ultimately lead to the creation of novel communities. In these communities certain interactions may no longer occur while there will also be potential for the emergence of new relationships. Alien species can both partly compensate for the often negative effects of climate change but also amplify them in some cases. Since potential positive effects are often restricted to generalist interactions among species, climate change and alien species in combination can result in significant threats to more specialist interactions involving native species.


Proceedings of the Royal Society of London. Series B, Biological Sciences | 2009

Invasive plant integration into native plant–pollinator networks across Europe

Montserrat Vilà; Ignasi Bartomeus; Anke C. Dietzsch; Theodora Petanidou; Ingolf Steffan-Dewenter; Jane C. Stout; Thomas Tscheulin

The structure of plant–pollinator networks has been claimed to be resilient to changes in species composition due to the weak degree of dependence among mutualistic partners. However, detailed empirical investigations of the consequences of introducing an alien plant species into mutualistic networks are lacking. We present the first cross-European analysis by using a standardized protocol to assess the degree to which a particular alien plant species (i.e. Carpobrotus affine acinaciformis, Impatiens glandulifera, Opuntia stricta, Rhododendron ponticum and Solanum elaeagnifolium) becomes integrated into existing native plant–pollinator networks, and how this translates to changes in network structure. Alien species were visited by almost half of the pollinator species present, accounting on average for 42 per cent of the visits and 24 per cent of the network interactions. Furthermore, in general, pollinators depended upon alien plants more than on native plants. However, despite the fact that invaded communities received more visits than uninvaded communities, the dominant role of alien species over natives did not translate into overall changes in network connectance, plant linkage level and nestedness. Our results imply that although supergeneralist alien plants can play a central role in the networks, the structure of the networks appears to be very permeable and robust to the introduction of invasive alien species into the network.


PLOS ONE | 2014

Agricultural policies exacerbate honeybee pollination service supply-demand mismatches across Europe

Tom D. Breeze; Bernard E. Vaissière; Riccardo Bommarco; Theodora Petanidou; Nicos Seraphides; Lajos Kozák; Jeroen Scheper; Jacobus C. Biesmeijer; David Kleijn; Steen Gyldenkærne; Marco Moretti; Andrea Holzschuh; Ingolf Steffan-Dewenter; Jane C. Stout; Meelis Pärtel; Martin Zobel; Simon G. Potts

Declines in insect pollinators across Europe have raised concerns about the supply of pollination services to agriculture. Simultaneously, EU agricultural and biofuel policies have encouraged substantial growth in the cultivated area of insect pollinated crops across the continent. Using data from 41 European countries, this study demonstrates that the recommended number of honeybees required to provide crop pollination across Europe has risen 4.9 times as fast as honeybee stocks between 2005 and 2010. Consequently, honeybee stocks were insufficient to supply >90% of demands in 22 countries studied. These findings raise concerns about the capacity of many countries to cope with major losses of wild pollinators and highlight numerous critical gaps in current understanding of pollination service supplies and demands, pointing to a pressing need for further research into this issue.


American Journal of Botany | 1995

CONSTRAINTS ON FLOWERING PHENOLOGY IN A PHRYGANIC (EAST MEDITERRANEAN SHRUB) COMMUNITY

Theodora Petanidou; Willem N. Ellis; Nikos S. Margaris; Despina Vokou

Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.


Journal of Chemical Ecology | 2005

Sugars in Mediterranean Floral Nectars: An Ecological and Evolutionary Approach

Theodora Petanidou

High-pressure liquid chromatography analyses of 73 plant species showed that the nectars of phrygana (East Mediterranean garrigue) mainly contain sucrose, glucose, and fructose, and traces of 10 minor sugars. Although the sucrose/hexose ratio was not related to plant life habit, ecological constraints had a detectable effect in shaping sugar composition. This was detected by distinguishing the phryganic plant species into “spring–summer” and “winter” flowering, with the distinction made on the basis of the water deficit in the study area. Plants flowering in spring–summer had a higher rate of “high sucrose” (i.e., sucrose/hexose ratio ≥0.5; 60.8% of the plant species) vs. “low hexose” nectars (i.e., ratio <0.5; 39.2%). The ratio was reversed in winter flowering species (36.4% vs. 63.6% with “high sucrose” and “high hexose,” respectively). Sucrose/hexose ratios were associated with plant family. The highest values were those of Lamiaceae, which differed significantly from the “low sucrose” Liliaceae and Apiaceae. Based on recorded plant–pollinator interactions in the community, the present data provide evidence of a partitioning of nectar resources by the existing pollinator guilds within the community, based on the sugar profiles of nectar (all sucrose/hexose ratios for all interactions). Among all major groups, bees and wasps (aculeates) preferred “high sucrose” nectars, which differed significantly from syrphids, anthomyid a.o. flies, and beetles that visited “low sucrose” nectars. Similarly, butterflies visited “lower sucrose” nectars compared to bees. Within families, only Megachilidae could be clearly characterized as “high sucrose” consumers, differing in this respect from all the remaining insect groups including most other bee families. This confirms previous findings that Megachilidae have a key position in Mediterranean communities where they probably constitute a selective factor for “high sucrose” nectars.


Ecology Letters | 2014

The potential for indirect effects between co-flowering plants via shared pollinators depends on resource abundance, accessibility and relatedness

Luísa G. Carvalheiro; Jacobus C. Biesmeijer; Gita Benadi; Jochen Fründ; Martina Stang; Ignasi Bartomeus; Christopher N. Kaiser-Bunbury; Mathilde Baude; Sofia I. F. Gomes; Vincent Merckx; Katherine C. R. Baldock; Andrew T. D. Bennett; Ruth Boada; Riccardo Bommarco; Ralph V. Cartar; Natacha P. Chacoff; Juliana Dänhardt; Lynn V. Dicks; Carsten F. Dormann; Johan Ekroos; Kate S. E. Henson; Andrea Holzschuh; Robert R. Junker; Martha Lopezaraiza-Mikel; Jane Memmott; Ana Montero-Castaño; Isabel L. Nelson; Theodora Petanidou; Eileen F. Power; Maj Rundlöf

Co-flowering plant species commonly share flower visitors, and thus have the potential to influence each others pollination. In this study we analysed 750 quantitative plant-pollinator networks from 28 studies representing diverse biomes worldwide. We show that the potential for one plant species to influence another indirectly via shared pollinators was greater for plants whose resources were more abundant (higher floral unit number and nectar sugar content) and more accessible. The potential indirect influence was also stronger between phylogenetically closer plant species and was independent of plant geographic origin (native vs. non-native). The positive effect of nectar sugar content and phylogenetic proximity was much more accentuated for bees than for other groups. Consequently, the impact of these factors depends on the pollination mode of plants, e.g. bee or fly pollinated. Our findings may help predict which plant species have the greatest importance in the functioning of plant-pollination networks.


Environmental Management | 2008

Socioeconomic Dimensions of Changes in the Agricultural Landscape of the Mediterranean Basin: A Case Study of the Abandonment of Cultivation Terraces on Nisyros Island, Greece

Theodora Petanidou; Thanasis Kizos; Nikolaos Soulakellis

Agricultural landscapes illustrate the impact of human actions on physical settings, and differential human pressures cause these landscapes to change with time. Our study explored changes in the terraced landscapes of Nisyros Island, Greece, focusing on the socioeconomic aspects during two time periods using field data, cadastral research, local documents, and published literature, as well as surveys of the islanders. Population increases during the late 19th to early 20th centuries marked a significant escalation of terrace and dry stone wall construction, which facilitated cultivation on 58.4% of the island. By the mid-20th century, the economic collapse of agricultural activities and consequent emigration caused the abandonment of cultivated land and traditional management practices, dramatically reducing farm and field numbers. Terrace abandonment continued in recent decades, with increased livestock grazing becoming the main land management tool; as a result, both farm and pasture sizes increased. Neglect and changing land use has led to deterioration and destruction of many terraces on the island. We discuss the socioeconomic and political backgrounds responsible for the land-use change before World War II (annexation of Nisyros Island by the Ottoman Empire, Italy, and Greece; overseas migration opportunities; and world transportation changes) and after the war (social changes in peasant societies; worldwide changes in agricultural production practices). The adverse landscape changes documented for Nisyros Island appear to be inevitable for modern Mediterranean rural societies, including those on other islands in this region. The island’s unique terraced landscapes may qualify Nisyros to become an archive or repository of old agricultural management techniques to be used by future generations and a living resource for sustainable management.


New Phytologist | 2015

The scope of Baker's law

John R. Pannell; Josh R. Auld; Yaniv Brandvain; Martin Burd; Jeremiah W. Busch; Pierre-Olivier Cheptou; Jeffrey K. Conner; Emma E. Goldberg; Alannie-Grace Grant; Dena L. Grossenbacher; Stephen M. Hovick; Boris Igic; Susan Kalisz; Theodora Petanidou; April M. Randle; Rafael Rubio de Casas; Anton Pauw; Jana C. Vamosi; Alice A. Winn

Bakers law refers to the tendency for species that establish on islands by long-distance dispersal to show an increased capacity for self-fertilization because of the advantage of self-compatibility when colonizing new habitat. Despite its intuitive appeal and broad empirical support, it has received substantial criticism over the years since it was proclaimed in the 1950s, not least because it seemed to be contradicted by the high frequency of dioecy on islands. Recent theoretical work has again questioned the generality and scope of Bakers law. Here, we attempt to discern where the idea is useful to apply and where it is not. We conclude that several of the perceived problems with Bakers law fall away when a narrower perspective is adopted on how it should be circumscribed. We emphasize that Bakers law should be read in terms of an enrichment of a capacity for uniparental reproduction in colonizing situations, rather than of high selfing rates. We suggest that Bakers law might be tested in four different contexts, which set the breadth of its scope: the colonization of oceanic islands, metapopulation dynamics with recurrent colonization, range expansions with recurrent colonization, and colonization through species invasions.

Collaboration


Dive into the Theodora Petanidou's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ante Vujić

University of Novi Sad

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Josef Settele

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stefanos P. Sgardelis

Aristotle University of Thessaloniki

View shared research outputs
Top Co-Authors

Avatar

Riccardo Bommarco

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jelle Devalez

University of the Aegean

View shared research outputs
Researchain Logo
Decentralizing Knowledge