Theodora Szasz
Georgia Regents University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Theodora Szasz.
Clinical Science | 2012
Theodora Szasz; R. Clinton Webb
PVAT (perivascular adipose tissue) has recently been recognized as a novel factor in vascular biology, with implications in the pathophysiology of cardiovascular disease. Composed mainly of adipocytes, PVAT releases a wide range of biologically active molecules that modulate vascular smooth muscle cell contraction, proliferation and migration. PVAT exerts an anti-contractile effect in various vascular beds which seems to be mediated by an as yet elusive PVRF [PVAT-derived relaxing factor(s)]. Considerable progress has been made on deciphering the nature and mechanisms of action of PVRF, and the PVRFs proposed until now are reviewed here. However, complex pathways seem to regulate PVAT function and more than one mechanism is probably responsible for PVAT actions in vascular biology. The present review describes our current knowledge on the structure and function of PVAT, with a focus on its role in modulating vascular tone. Potential involvements of PVAT dysfunction in obesity, hypertension and atherosclerosis will be highlighted.
Vascular Health and Risk Management | 2013
Theodora Szasz; Gisele Facholi Bomfim; R. Clinton Webb
The perivascular adipose tissue (PVAT) is now recognized as an active contributor to vascular function. Adipocytes and stromal cells contained within PVAT are a source of an ever-growing list of molecules with varied paracrine effects on the underlying smooth muscle and endothelial cells, including adipokines, cytokines, reactive oxygen species, and gaseous compounds. Their secretion is regulated by systemic or local cues and modulates complex processes, including vascular contraction and relaxation, smooth muscle cell proliferation and migration, and vascular inflammation. Recent evidence demonstrates that metabolic and cardiovascular diseases alter the morphological and secretory characteristics of PVAT, with notable consequences. In obesity and diabetes, the expanded PVAT contributes to vascular insulin resistance. PVAT-derived cytokines may influence key steps of atherogenesis. The physiological anticontractile effect of PVAT is severely diminished in hypertension. Above all, a common denominator of the PVAT dysfunction in all these conditions is the immune cell infiltration, which triggers the subsequent inflammation, oxidative stress, and hypoxic processes to promote vascular dysfunction. In this review, we discuss the currently known mechanisms by which the PVAT influences blood vessel function. The important discoveries in the study of PVAT that have been made in recent years need to be further advanced, to identify the mechanisms of the anticontractile effects of PVAT, to explore the vascular-bed and species differences in PVAT function, to understand the regulation of PVAT secretion of mediators, and finally, to uncover ways to ameliorate cardiovascular disease by targeting therapeutic approaches to PVAT.
Experimental Biology and Medicine | 2007
Theodora Szasz; Keshari M. Thakali; Gregory D. Fink; Stephanie W. Watts
Reactive oxygen species (ROS) are by-products of oxygen metabolism, normally present in low levels inside cells, where they participate in signaling processes. The delicate balance in the continuous cycle of ROS generation and inactivation is maintained by enzymatic and nonenzymatic endogenous systems. Overwhelming production of ROS (by such sources as the mitochondrial electron transport chain, NADPH oxidase, xanthine oxidase, or uncoupled nitric oxide synthase), when inadequately counteracted by destruction through antioxidant systems (such as superoxide dismutase or catalase), leads to a prooxidant state also known as oxidative stress. Increased levels of ROS and markers of oxidative stress have been consistently found in such cardiovascular diseases as atherosclerosis or hypertension, although controversy still exists over the pathophysiological role of oxidative stress in these conditions. ROS can modulate vascular function either by direct oxidative damage or by activating cellular signaling pathways that lead to abnormal contractile, inflammatory, proliferative, or remodeling properties of the blood vessel. Most current research focuses on these processes in arteries, leaving veins, “the other side“ of vascular biology, in obscurity. Veins are different structurally and functionally from arteries. Equipped with a smaller smooth muscle layer compared to arteries, but being able to accommodate 70% of the circulating blood volume, veins can modulate cardiovascular homeostasis and contribute significantly to hypertension pathogenesis. Although the reports on the quantitative differences in ROS production in veins compared to arteries had conflicting results, there is a clear qualitative difference in ROS metabolism and utilization between the two vessel types. This review will compare and contrast the current knowledge of ROS metabolism in arteries versus veins in both physiological and pathophysiological conditions. Our understanding of the mechanisms underlying vascular diseases would greatly benefit from a more thorough exploration of the role of veins and venous oxidative stress.
British Journal of Pharmacology | 2008
Wei Ni; T J Geddes; J R C Priestley; Theodora Szasz; D M Kuhn; Stephanie W. Watts
5‐HT is a vasoconstrictor exhibiting enhanced effects in systemic arteries from subjects with cardiovascular disease. The effect of endogenous 5‐HT on arteries is controversial, because the concentration of free circulating 5‐HT is low and a 5‐hydroxytryptaminergic system has not been identified in peripheral arteries. We hypothesized that a local 5‐hydroxytryptaminergic system (including 5‐HT synthesis, metabolism, uptake and release) with physiological function exists in peripheral arteries.
European Heart Journal | 2014
Camilla F Wenceslau; Cameron G. McCarthy; Theodora Szasz; Kathryn Spitler; Styliani Goulopoulou; R. Clinton Webb
Immune system activation occurs not only due to foreign stimuli, but also due to endogenous molecules. As such, endogenous molecules that are released into the circulation due to cell death and/or injury alarm the immune system that something has disturbed homeostasis and a response is needed. Collectively, these molecules are known as damage-associated molecular patterns (DAMPs). Mitochondrial DAMPs (mtDAMPs) are potent immunological activators due to the bacterial ancestry of mitochondria. Mitochondrial DAMPs are recognized by specific pattern recognition receptors of the innate immune system, some of which are expressed in the cardiovascular system. Cell death leads to release of mtDAMPs that may induce vascular changes by mechanisms that are currently not well understood. This review will focus on recently published evidence linking mtDAMPs and immune system activation to vascular dysfunction and cardiovascular disease.
American Journal of Physiology-heart and Circulatory Physiology | 2015
Camilla F Wenceslau; Cameron G. McCarthy; Theodora Szasz; Styliani Goulopoulou; R. Clinton Webb
Fifty percent of trauma patients who present sepsis-like syndrome do not have bacterial infections. This condition is known as systemic inflammatory response syndrome (SIRS). A unifying factor of SIRS and sepsis is cardiovascular collapse. Trauma and severe blood loss cause the release of endogenous molecules known as damage-associated molecular patterns. Mitochondrial N-formyl peptides (F-MIT) are damage-associated molecular patterns that share similarities with bacterial N-formylated peptides and are potent immune system activators. The goal of this study was to investigate whether F-MIT trigger SIRS, including hypotension and vascular collapse via formyl peptide receptor (FPR) activation. We evaluated cardiovascular parameters in Wistar rats treated with FPR or histamine receptor antagonists and inhibitors of the nitric oxide pathway before and after F-MIT infusion. F-MIT, but not nonformylated peptides or mitochondrial DNA, induced severe hypotension via FPR activation and nitric oxide and histamine release. Moreover, F-MIT infusion induced hyperthermia, blood clotting, and increased vascular permeability. To evaluate the role of leukocytes in F-MIT-induced hypotension, neutrophil, basophil, or mast cells were depleted. Depletion of basophils, but not neutrophils or mast cells, abolished F-MIT-induced hypotension. Rats that underwent hemorrhagic shock increased plasma levels of mitochondrial formylated proteins associated with lung damage and antagonism of FPR ameliorated hemorrhagic shock-induced lung injury. Finally, F-MIT induced vasodilatation in isolated resistance arteries via FPR activation; however, F-MIT impaired endothelium-dependent relaxation in the presence of blood. These data suggest that F-MIT may be the link among trauma, SIRS, and cardiovascular collapse.
Journal of Pharmacology and Experimental Therapeutics | 2007
A. Elizabeth Linder; Wei Ni; Jessica Diaz; Theodora Szasz; Robert Burnett; Stephanie W. Watts
The circulatory system consists of veins and arteries. Compared with arteries, veins have been neglected in cardiovascular research. Although veins are significantly less muscular than similarly sized arteries, the contribution of veins to cardiovascular homeostasis cannot be left un-noted because veins accommodate 70% of the circulating blood. Circulating blood platelets contain the majority of systemic 5-HT (5-hydroxytryptamine; serotonin). Similar to venous function, the physiological role of 5-HT in the cardiovascular system is not well understood. Here, we present not only a review on 5-HT and veins but ways in which these two topics might intersect in a physiologically relevant manner. Here we show the novel findings that veins exhibit higher amounts of intracellular 5-HT than arteries. Moreover, we also show evidence that, similar to arteries, veins have the ability to uptake 5-HT. In this review, we introduce the venous system as a reservoir for 5-HT in the periphery, suggesting that veins, in addition to arteries, may represent an important target for drugs that interfere with the serotonergic system. In addition, the serotonergic system from synthesis to metabolism, 5-HT receptor activation and venous diseases will also be discussed.
Medical Hypotheses | 2013
Camilla F Wenceslau; Cameron G. McCarthy; Styliani Goulopoulou; Theodora Szasz; E.G. NeSmith; R.C. Webb
Sepsis is a major cause of mortality and morbidity in trauma patients despite aggressive treatment. Traumatic injury may trigger infective or non-infective systemic inflammatory response syndrome (SIRS) and sepsis. Sepsis and SIRS are accompanied by an inability to regulate the inflammatory response but the cause of this perturbation is still unknown. The major pathophysiological characteristic of sepsis is the vascular collapse (i.e., loss of control of vascular tone); however, at the cellular level the final mediator of extreme vasodilatation has yet to be identified. After trauma, cellular injury releases endogenous damage-associated molecular patterns (DAMPs) that activate the innate immune system. Mitochondrial DAMPs express at least two molecular signatures, N-formyl peptides and mitochondrial DNA that act on formyl peptide receptors (FPRs) and Toll-like receptor 9, respectively. N-Formyl peptides are potent immunocyte activators and, once released in the circulation, they induce modulation of vascular tone by cellular mechanisms that are not completely understood. We have observed that N-formyl peptides from bacterial (FMLP) and mitochondrial (FMIT) sources induce FPR-mediated vasodilatation in resistance arteries. Accordingly, we propose that tissue and cellular trauma induces the release of N-formyl peptides from mitochondria triggering inflammation and vascular collapse via activation of FPR and contributing to the development of sepsis. The proposed hypothesis provides clinically significant information linking trauma, mitochondrial N-formyl peptides and inflammation to vascular collapse and sepsis. If our hypothesis is true, it may lead to new strategies in the management of sepsis that can help clinicians effectively manage non-infectious and infectious inflammatory responses.
Journal of Pharmacology and Experimental Therapeutics | 2008
A. Elizabeth Linder; Wei Ni; Theodora Szasz; Robert Burnett; Jessica Diaz; Timothy J. Geddes; Donald M. Kuhn; Stephanie W. Watts
We hypothesized that the 5-hydroxytryptamine (5-HT; serotonin) system is present and functional in veins. In vena cava (VC), the presence of the 5-HT synthesis rate-limiting enzyme tryptophan hydroxylase-1 mRNA and accumulation of the 5-HT synthesis intermediate 5-hydroxytryptophan after incubation with tryptophan supported the ability of veins to synthesize 5-HT. The presence of 5-HT and its metabolite 5-hydroxyindole acetic acid was measured by high-performance liquid chromatography in VC and jugular vein (JV), and it was compared with similarly sized arteries aorta (RA) and carotid (CA), respectively. In rats treated with the monoamine oxidase-A (MAO-A) inhibitor pargyline to prevent 5-HT metabolism, basal 5-HT levels were higher in veins than in arteries. 5-HT uptake was observed after exposure to exogenous 5-HT in all vessels. The presence of MAO-A and the 5-HT transporter (SERT) in VC was observed by immunohistochemistry and Western analysis. However, 5-HT uptake was not inhibited by the SERT inhibitors fluoxetine and/or fluvoxamine in VC and JV, as opposed to the inhibition in RA and CA. Moreover, studies performed in VC from mutant rats lacking SERT showed no differences in 5-HT uptake compared with VC from wild type. These data suggest the SERT is not functional under physiological conditions in veins. The differences in 5-HT handling between veins and arteries may represent alternative avenues for targeting the 5-HT system in the peripheral circulation for controlling vascular tone.
Pharmacological Research | 2012
Takayuki Matsumoto; Theodora Szasz; Rita C. Tostes; R. Clinton Webb
β-Adrenoceptor (β-AR)-mediated relaxation plays an important role in the regulation of vascular tone. β-AR-mediated vascular relaxation is reduced in various disease states and aging. We hypothesized that β-AR-mediated vasodilatation is impaired in DOCA-salt hypertension due to alterations in the cAMP pathway. β-AR-mediated relaxation was determined in small mesenteric arteries from DOCA-salt hypertensive and control uninephrectomized (Uni) rats. To exclude nitric oxide (NO) and cyclooxygenase (COX) pathways, relaxation responses were determined in the presence of l-NNA and indomethacin, NO synthase inhibitor and COX inhibitors, respectively. Isoprenaline (ISO)-induced relaxation was reduced in arteries from DOCA-salt compared to Uni rats. Protein kinase A (PKA) inhibitors (H89 or Rp-cAMPS) or adenylyl cyclase inhibitor (SQ22536) did not abolish the difference in ISO-induced relaxation between the groups. Forskolin (adenylyl cyclase activator)-induced relaxation was similar between the groups. The inhibition of IK(Ca)/SK(Ca) channels (TRAM-34 plus UCL1684) or BK(Ca) channels (iberiotoxin) reduced ISO-induced relaxation only in Uni rats and abolished the relaxation differences between the groups. The expression of SK(Ca) channel was decreased in DOCA-salt arteries. The expression of BK(Ca) channel α subunit was increased whereas the expression of BK(Ca) channel β subunit was decreased in DOCA-salt arteries. The expression of receptor for activated C kinase 1 (RACK1), which is a binding protein for BK(Ca) channel and negatively modulates its activity, was increased in DOCA-salt arteries. These results suggest that the impairment of β-AR-mediated relaxation in DOCA-salt mesenteric arteries may be attributable to altered IK(Ca)/SK(Ca) and/or BK(Ca) channels activities rather than cAMP/PKA pathway. Impaired β-AR-stimulated BK(Ca) channel activity may be due to the imbalance between its subunit expressions and RACK1 upregulation.