Theodore C. White
University of Missouri–Kansas City
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Theodore C. White.
Science Translational Medicine | 2012
Gordon D. Brown; David W. Denning; Neil A. R. Gow; Stuart M. Levitz; Mihai G. Netea; Theodore C. White
The lack of robust rapid diagnostic tests, safe and effective drugs, and preventative vaccines hampers treatment of patients with invasive fungal infections. Although fungal infections contribute substantially to human morbidity and mortality, the impact of these diseases on human health is not widely appreciated. Moreover, despite the urgent need for efficient diagnostic tests and safe and effective new drugs and vaccines, research into the pathophysiology of human fungal infections lags behind that of diseases caused by other pathogens. In this Review, we highlight the importance of fungi as human pathogens and discuss the challenges we face in combating the devastating invasive infections caused by these microorganisms, in particular in immunocompromised individuals.
The Journal of Infectious Diseases | 2000
Kieren A. Marr; Kristy Seidel; Theodore C. White; Raleigh A. Bowden
The prophylactic use of fluconazole is common in blood and marrow transplant (BMT) recipients. To evaluate how fluconazole has influenced the development of azole resistance and candidemia, weekly mouthwashings were done, and fluconazole susceptibility was determined for 1475 colonizing and invasive isolates obtained from patients undergoing BMT. Of 585 patients, 256 (44%) were colonized with Candida species during the course of BMT. Of these, 136 patients (53%) had at least 1 mouthwashing sample that yielded Candida species other than C. albicans on culture. Only 4.6% of patients developed candidemia. Overall, C. albicans was the most common colonizing isolate, but it caused only 7% of cases of candidemia. About 5% of colonizing C. albicans strains and 100% (2 of 2) invasive C. albicans strains were fluconazole-resistant. Colonization, cytomegalovirus disease, and bacteremia are risk factors for the development of candidemia. The use of prophylactic fluconazole is associated with a low incidence of candidemia and attributable mortality, despite colonization with azole-resistant Candida species in BMT recipients.
Antimicrobial Agents and Chemotherapy | 2002
Theodore C. White; Scott Holleman; Francis Dy; Laurence F. Mirels; David A. Stevens
ABSTRACT Resistance to azole antifungals continues to be a significant problem in the common fungal pathogen Candida albicans. Many of the molecular mechanisms of resistance have been defined with matched sets of susceptible and resistant clinical isolates from the same strain. Mechanisms that have been identified include alterations in the gene encoding the target enzyme ERG11 or overexpression of efflux pump genes including CDR1, CDR2, and MDR1. In the present study, a collection of unmatched clinical isolates of C. albicans was analyzed for the known molecular mechanisms of resistance by standard methods. The collection was assembled so that approximately half of the isolates were resistant to azole drugs. Extensive cross-resistance was observed for fluconazole, clotrimazole, itraconazole, and ketoconazole. Northern blotting analyses indicated that overexpression of CDR1 and CDR2 correlates with resistance, suggesting that the two genes may be coregulated. MDR1 overexpression was observed infrequently in some resistant isolates. Overexpression of FLU1, an efflux pump gene related to MDR1, did not correlate with resistance, nor did overexpression of ERG11. Limited analysis of the ERG11 gene sequence identified several point mutations in resistant isolates; these mutations have been described previously. Two of the most common point mutations in ERG11 associated with resistance, D116E and E266D, were tested by restriction fragment length polymorphism analysis of the isolates from this collection. The results indicated that the two mutations occur frequently in different isolates of C. albicans and are not reliably associated with resistance. These analyses emphasize the diversity of mechanisms that result in a phenotype of azole resistance. They suggest that the resistance mechanisms identified in matched sets of susceptible and resistant isolates are not sufficient to explain resistance in a collection of unmatched clinical isolates and that additional mechanisms have yet to be discovered.
Journal of Clinical Microbiology | 2003
Richard J. Jurevic; Mai Bai; Robert B. Chadwick; Theodore C. White; Beverly A. Dale
ABSTRACT β-Defensins are cationic antimicrobial peptides expressed in epithelia. They exhibit antibacterial, antifungal, and antiviral properties. Defensins are a component of the innate immune response, and it has been proposed that they have a protective role in the oral cavity. Previous studies have shown that human β-defensin 1 (hBD-1) is constitutively expressed in oral epithelial cells but that expression varies between individuals. We tested the hypothesis that genetic variations in defensin peptide expression may be associated with opportunistic infections. This may be critical in the immunocompromised patient population, in which innate immune responses may have a relatively more important role. Oral Candida carriage status and the presence of six single-nucleotide polymorphisms (SNPs) in the DEFB1 gene encoding hBD-1 were evaluated in type I diabetic patients (n = 43) and nondiabetic controls (n = 50). Genomic DNA was obtained from buccal swabs. Portions of the DEFB1 gene were amplified, and each SNP was analyzed by a TaqMan assay, standardized with control DNA of known genotype. Candida carriage status was determined from unstimulated saliva on CHROMagar plating medium. A low level of Candida carriage was defined as ≤350 CFU/ml. A high level of Candida carriage was seen in 44% of the diabetic subjects but only in 28% of the nondiabetic controls (P < 0.05). C. albicans predominated; however, diabetic subjects, especially those with high levels of carriage, showed an increased proportion of Candida glabrata and C. tropicalis. There was a strong association between an SNP in the 5′ untranslated region (C→G at position −44) and Candida carriage in both groups. Among individuals in the diabetic population who had the SNP allele 2 (G), 58% had low CFU, while 6% had high CFU. The C→G SNP at position −44 is associated with low levels of Candida carriage. The resultant odd ratios are statistically significant for a protective effect (odd ratios, 25 for diabetic subjects and 8.5 for nondiabetic subjects). These results indicate that genetic variations in the DEFB1 gene encoding hBD-1 may have a major role in mediating and/or contributing to susceptibility to oral infection.
Medical Mycology | 1998
J.-A.H. van Burik; Randall W. Schreckhise; Theodore C. White; Raleigh A. Bowden; David Myerson
Filamentous fungi have a sturdy cell wall which is resistant to the usual DNA extraction procedures. We determined the DNA extraction procedure with the greatest yield of high quality fungal DNA and the least predilection for cross-contamination of equipment between specimens. Each of six extraction methods was performed using Aspergillus fumigatus hyphae. The six methods were: (1) glass bead pulverization with vortexing; (2) grinding with mortar and pestle followed by glass bead pulverization; (3) glass bead pulverization using 1% hydroxyacetyl trimethyl ammonium bromide (CTAB) buffer in a water bath sonicator; (4) water bath sonication in CTAB buffer; (5) grinding followed by incubation with CTAB; and (6) lyticase enzymatic cell lysis. Genomic DNA yields were measured by spectrophotometry and by visual reading of 2% agarose gels, with shearing assessed by the migration of the DNA on the gel. Genomic fungal DNA yields were highest for Method 1, followed by Methods 5 approximately = to 2 >3 approximately = to 4 approximately = to 6. Methods 2 and 5, both of which involved grinding with mortar and pestle, led to shearing of the genomic DNA in one of two trials each. We conclude that the use of glass beads with extended vortexing is optimal for extraction of microgramme amounts of DNA from filamentous fungal cultures.
Eukaryotic Cell | 2004
Peter M. Silver; Brian Oliver; Theodore C. White
ABSTRACT In Candida albicans, drug resistance to clinically important antifungal drugs may be regulated through the action of transcription factors in a manner that may or may not be similar to regulation in Saccharomyces cerevisiae. A search of the C. albicans genome identified a single homolog of the S. cerevisiae transcription factor genes UPC2 (ScUPC2) and ECM22 (ScECM22) that have been associated with regulation of ergosterol biosynthesis. Sequence analysis of this C. albicans UPC2 (CaUPC2) gene identifies two domains, an anchoring transmembrane domain and a transcription factor region containing multiple nuclear localization signals and a fungal Zn(2)-Cys(6) binuclear cluster domain. Heterozygous deletion, homozygous deletion, and reconstructed strains of CaUPC2 as well as the parental strain were tested against several antifungal drugs, including ergosterol biosynthesis inhibitors. The CaUPC2 homozygous deletion strain showed marked hypersusceptibility to most drugs, compared to the parental and reconstructed strains. The deletion strains accumulate significantly less radiolabeled cholesterol, suggesting reduced ergosterol scavenging in those strains. When grown under azole drug pressure, the parental, heterozygous deletion and reconstructed strains of CaUPC2 upregulate the ERG2 and ERG11 ergosterol biosynthesis genes, while the homozygous deletion strain shows no such upregulation. Consistent with these results, CaUPC2 deletion strains show reduced ergosterol levels, which may explain the increased susceptibilities of the CaUPC2 deletion strains. Thus, it appears that CaUPC2 acts as a transcription factor involved in the regulation of ergosterol biosynthetic genes and as a regulator of sterol uptake across the plasma membrane.
Clinical Infectious Diseases | 1997
Kieren A. Marr; Theodore C. White; Jo Anne Van Burik; Raleigh A. Bowden
Oral candidiasis due to azole-resistant Candida albicans is an increasing problem in patients with AIDS who received prolonged periods of fluconazole prophylaxis. Infection with C. albicans is also frequent in patients undergoing transplantation. However, azole resistance has not been appreciated as a major problem for these patients, presumably because they receive a relatively short duration of fluconazole prophylaxis. We describe a case of disseminated candidiasis due to fluconazole-resistant C. albicans in a patient following marrow transplantation. Restriction fragment length polymorphism analysis with use of the C. albicans strain-specific Ca3 probe was performed on sequential isolates. Identical banding patterns were obtained, thereby confirming that a fluconazole-susceptible endogenous C. albicans acquired azole resistance during a brief exposure to the drug and subsequently caused disseminated infection. This observation raises questions regarding the incidence, significance, and mechanism of azole resistance in fungi causing infection in this population.
Genome Biology | 2011
Anke Burmester; Ekaterina Shelest; Gernot Glöckner; Christoph Heddergott; Susann Schindler; Peter Staib; Andrew J. Heidel; Marius Felder; Andreas Petzold; Karol Szafranski; Marc Feuermann; Ivo Pedruzzi; Steffen Priebe; Marco Groth; Robert Winkler; Wenjun Li; Olaf Kniemeyer; Volker Schroeckh; Christian Hertweck; Bernhard Hube; Theodore C. White; Matthias Platzer; Reinhard Guthke; Joseph Heitman; Johannes Wöstemeyer; Peter F. Zipfel; Michel Monod; Axel A. Brakhage
BackgroundMillions of humans and animals suffer from superficial infections caused by a group of highly specialized filamentous fungi, the dermatophytes, which exclusively infect keratinized host structures. To provide broad insights into the molecular basis of the pathogenicity-associated traits, we report the first genome sequences of two closely phylogenetically related dermatophytes, Arthroderma benhamiae and Trichophyton verrucosum, both of which induce highly inflammatory infections in humans.Results97% of the 22.5 megabase genome sequences of A. benhamiae and T. verrucosum are unambiguously alignable and collinear. To unravel dermatophyte-specific virulence-associated traits, we compared sets of potentially pathogenicity-associated proteins, such as secreted proteases and enzymes involved in secondary metabolite production, with those of closely related onygenales (Coccidioides species) and the mould Aspergillus fumigatus. The comparisons revealed expansion of several gene families in dermatophytes and disclosed the peculiarities of the dermatophyte secondary metabolite gene sets. Secretion of proteases and other hydrolytic enzymes by A. benhamiae was proven experimentally by a global secretome analysis during keratin degradation. Molecular insights into the interaction of A. benhamiae with human keratinocytes were obtained for the first time by global transcriptome profiling. Given that A. benhamiae is able to undergo mating, a detailed comparison of the genomes further unraveled the genetic basis of sexual reproduction in this species.ConclusionsOur results enlighten the genetic basis of fundamental and putatively virulence-related traits of dermatophytes, advancing future research on these medically important pathogens.
Mbio | 2012
Diego Martinez; Brian G. Oliver; Yvonne Gräser; Jonathan M. Goldberg; Wenjun Li; Nilce M. Martinez-Rossi; Michel Monod; Ekaterina Shelest; Richard Barton; Elizabeth Birch; Axel A. Brakhage; Zehua Chen; Sarah J. Gurr; David I. Heiman; Joseph Heitman; Idit Kosti; Antonio Rossi; Sakina Saif; Marketa Samalova; Charles Winston Saunders; Terrance Shea; Richard C. Summerbell; Jun Xu; Qiandong Zeng; Bruce W. Birren; Christina A. Cuomo; Theodore C. White
ABSTRACT The major cause of athlete’s foot is Trichophyton rubrum, a dermatophyte or fungal pathogen of human skin. To facilitate molecular analyses of the dermatophytes, we sequenced T. rubrum and four related species, Trichophyton tonsurans, Trichophyton equinum, Microsporum canis, and Microsporum gypseum. These species differ in host range, mating, and disease progression. The dermatophyte genomes are highly colinear yet contain gene family expansions not found in other human-associated fungi. Dermatophyte genomes are enriched for gene families containing the LysM domain, which binds chitin and potentially related carbohydrates. These LysM domains differ in sequence from those in other species in regions of the peptide that could affect substrate binding. The dermatophytes also encode novel sets of fungus-specific kinases with unknown specificity, including nonfunctional pseudokinases, which may inhibit phosphorylation by competing for kinase sites within substrates, acting as allosteric effectors, or acting as scaffolds for signaling. The dermatophytes are also enriched for a large number of enzymes that synthesize secondary metabolites, including dermatophyte-specific genes that could synthesize novel compounds. Finally, dermatophytes are enriched in several classes of proteases that are necessary for fungal growth and nutrient acquisition on keratinized tissues. Despite differences in mating ability, genes involved in mating and meiosis are conserved across species, suggesting the possibility of cryptic mating in species where it has not been previously detected. These genome analyses identify gene families that are important to our understanding of how dermatophytes cause chronic infections, how they interact with epithelial cells, and how they respond to the host immune response. IMPORTANCE Athlete’s foot, jock itch, ringworm, and nail infections are common fungal infections, all caused by fungi known as dermatophytes (fungi that infect skin). This report presents the genome sequences of Trichophyton rubrum, the most frequent cause of athlete’s foot, as well as four other common dermatophytes. Dermatophyte genomes are enriched for four gene classes that may contribute to the ability of these fungi to cause disease. These include (i) proteases secreted to degrade skin; (ii) kinases, including pseudokinases, that are involved in signaling necessary for adapting to skin; (iii) secondary metabolites, compounds that act as toxins or signals in the interactions between fungus and host; and (iv) a class of proteins (LysM) that appear to bind and mask cell wall components and carbohydrates, thus avoiding the host’s immune response to the fungi. These genome sequences provide a strong foundation for future work in understanding how dermatophytes cause disease. Athlete’s foot, jock itch, ringworm, and nail infections are common fungal infections, all caused by fungi known as dermatophytes (fungi that infect skin). This report presents the genome sequences of Trichophyton rubrum, the most frequent cause of athlete’s foot, as well as four other common dermatophytes. Dermatophyte genomes are enriched for four gene classes that may contribute to the ability of these fungi to cause disease. These include (i) proteases secreted to degrade skin; (ii) kinases, including pseudokinases, that are involved in signaling necessary for adapting to skin; (iii) secondary metabolites, compounds that act as toxins or signals in the interactions between fungus and host; and (iv) a class of proteins (LysM) that appear to bind and mask cell wall components and carbohydrates, thus avoiding the host’s immune response to the fungi. These genome sequences provide a strong foundation for future work in understanding how dermatophytes cause disease.
Antimicrobial Agents and Chemotherapy | 2000
David C. Lamb; Diane E. Kelly; Theodore C. White; Steven Kelly
ABSTRACT The cytochrome P450 sterol 14α-demethylase (CYP51) ofCandida albicans is involved in an essential step of ergosterol biosynthesis and is the target for azole antifungal compounds. We have undertaken site-directed mutation of C. albicans CYP51 to produce a recombinant mutant protein with the amino acid substitution R467K corresponding to a mutation observed clinically. This alteration perturbed the heme environment causing an altered reduced-carbon monoxide difference spectrum with a maximum at 452 nm and reduced the affinity of the enzyme for fluconazole, as shown by ligand binding studies. The specific activity of CYP51(R467K) for the release of formic acid from 3β-[32-3H]hydroxylanost-7-en-32-ol was 70 pmol/nmol of P450/min for microsomal protein compared to 240 pmol/nmol of P450/min for microsomal fractions expressing wild-type CYP51. Furthermore, inhibition of activity by fluconazole revealed a 7.5-fold-greater azole resistance of the recombinant protein than that of the wild type. This study demonstrates that resistance observed clinically can result from the altered azole affinity of the fungal CYP51 enzyme.