Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Theodore H. Lindsay is active.

Publication


Featured researches published by Theodore H. Lindsay.


Lab on a Chip | 2012

A microfluidic device for whole-animal drug screening using electrophysiological measures in the nematode C. elegans

Shawn R. Lockery; S. Elizabeth Hulme; William M. Roberts; Kristin J. Robinson; Anna Laromaine; Theodore H. Lindsay; George M. Whitesides; Janis C. Weeks

This paper describes the fabrication and use of a microfluidic device for performing whole-animal chemical screens using non-invasive electrophysiological readouts of neuromuscular function in the nematode worm, C. elegans. The device consists of an array of microchannels to which electrodes are attached to form recording modules capable of detecting the electrical activity of the pharynx, a heart-like neuromuscular organ involved in feeding. The array is coupled to a tree-like arrangement of distribution channels that automatically delivers one nematode to each recording module. The same channels are then used to perfuse the recording modules with test solutions while recording the electropharyngeogram (EPG) from each worm with sufficient sensitivity to detect each pharyngeal contraction. The device accurately reported the acute effects of known anthelmintics (anti-nematode drugs) and also correctly distinguished a specific drug-resistant mutant strain of C. elegans from wild type. The approach described here is readily adaptable to parasitic species for the identification of novel anthelmintics. It is also applicable in toxicology and drug discovery programs for human metabolic and degenerative diseases for which C. elegans is used as a model.


Nature Communications | 2011

Optogenetic analysis of synaptic transmission in the central nervous system of the nematode Caenorhabditis elegans

Theodore H. Lindsay; Tod R. Thiele; Shawn R. Lockery

A reliable method for recording evoked synaptic events in identified neurons in Caenorhabditis elegans would greatly accelerate our understanding of its nervous system at the molecular, cellular and network levels. Here we describe a method for recording synaptic currents and potentials from identified neurons in nearly intact worms. Dissection and exposure of postsynaptic neurons is facilitated by microfabricated agar substrates, and ChannelRhodopsin-2 is used to stimulate presynaptic neurons. We used the method to analyse functional connectivity between a polymodal nociceptor and a command neuron that initiates a stochastic escape behaviour. We find that escape probability mirrors the time course of synaptic current in the command neuron. Moreover, synaptic input increases smoothly as stimulus strength is increased, suggesting that the overall input-output function of the connection is graded. We propose a model in which the energetic cost of escape behaviours in C. elegans is tuned to the intensity of the threat.


Current Opinion in Neurobiology | 2012

Neuronal microcircuits for decision making in C. elegans

Serge Faumont; Theodore H. Lindsay; Shawn R. Lockery

The simplicity and genetic tractability of the nervous system of the nematode Caenorhabditis elegans make it an attractive system in which to seek biological mechanisms of decision making. Although work in this area remains at an early stage, four basic types paradigms of behavioral choice, a simple form of decision making, have now been demonstrated in C. elegans. A recent series of pioneering studies, combining genetics and molecular biology with new techniques such as microfluidics and calcium imaging in freely moving animals, has begun to elucidate the neuronal mechanisms underlying behavioral choice. The new research has focussed on choice behaviors in the context of habitat and resource localization, for which the neuronal circuit has been identified. Three main circuit motifs for behavioral choice have been identified. One motif is based mainly on changes in the strength of synaptic connections whereas the other two motifs are based on changes in the basal activity of an interneuron and the sensory neuron to which it is electrically coupled. Peptide signaling seems to play a prominent role in all three motifs, and it may be a general rule that concentrations of various peptides encode the internal states that influence behavioral decisions in C. elegans.


eLife | 2016

A stochastic neuronal model predicts random search behaviors at multiple spatial scales in C. elegans

William M. Roberts; Steven B Augustine; Kristy J. Lawton; Theodore H. Lindsay; Tod R. Thiele; Eduardo J. Izquierdo; Serge Faumont; Rebecca A. Lindsay; Matthew Cale Britton; Navin Pokala; Cornelia I. Bargmann; Shawn R. Lockery

Random search is a behavioral strategy used by organisms from bacteria to humans to locate food that is randomly distributed and undetectable at a distance. We investigated this behavior in the nematode Caenorhabditis elegans, an organism with a small, well-described nervous system. Here we formulate a mathematical model of random search abstracted from the C. elegans connectome and fit to a large-scale kinematic analysis of C. elegans behavior at submicron resolution. The model predicts behavioral effects of neuronal ablations and genetic perturbations, as well as unexpected aspects of wild type behavior. The predictive success of the model indicates that random search in C. elegans can be understood in terms of a neuronal flip-flop circuit involving reciprocal inhibition between two populations of stochastic neurons. Our findings establish a unified theoretical framework for understanding C. elegans locomotion and a testable neuronal model of random search that can be applied to other organisms.


Methods in Cell Biology | 2012

Electrophysiological methods for Caenorhabditis elegans neurobiology.

Miriam B. Goodman; Theodore H. Lindsay; Shawn R. Lockery; Janet E. Richmond

Patch-clamp electrophysiology is a technique of choice for the biophysical analysis of the function of nerve, muscle, and synapse in Caenorhabditis elegans nematodes. Considerable technical progress has been made in C. elegans electrophysiology in the decade since the initial publication of this technique. Today, most, if not all, electrophysiological studies that can be done in larger animal preparations can also be done in C. elegans. This chapter has two main goals. The first is to present to a broad audience the many techniques available for patch-clamp analysis of neurons, muscles, and synapses in C. elegans. The second is to provide a methodological introduction to the techniques for patch clamping C. elegans neurons and body-wall muscles in vivo, including emerging methods for optogenetic stimulation coupled with postsynaptic recording. We also present samples of the cell-intrinsic and postsynaptic ionic currents that can be measured in C. elegans nerves and muscles.


Learning & Memory | 2016

Dopamine receptor DOP-4 modulates habituation to repetitive photoactivation of a C. elegans polymodal nociceptor.

Evan L. Ardiel; Andrew C. Giles; Alex J. Yu; Theodore H. Lindsay; Shawn R. Lockery; Catharine H. Rankin

Habituation is a highly conserved phenomenon that remains poorly understood at the molecular level. Invertebrate model systems, like Caenorhabditis elegans, can be a powerful tool for investigating this fundamental process. Here we established a high-throughput learning assay that used real-time computer vision software for behavioral tracking and optogenetics for stimulation of the C. elegans polymodal nociceptor, ASH. Photoactivation of ASH with ChR2 elicited backward locomotion and repetitive stimulation altered aspects of the response in a manner consistent with habituation. Recording photocurrents in ASH, we observed no evidence for light adaptation of ChR2. Furthermore, we ruled out fatigue by demonstrating that sensory input from the touch cells could dishabituate the ASH avoidance circuit. Food and dopamine signaling slowed habituation downstream from ASH excitation via D1-like dopamine receptor, DOP-4. This assay allows for large-scale genetic and drug screens investigating mechanisms of nociception modulation.


Methods in Cell Biology | 2012

Electrophysiological Methods for C. elegans Neurobiology

Miriam B. Goodman; Theodore H. Lindsay; Shawn R. Lockery; Janet E. Richmond

Patch-clamp electrophysiology is a technique of choice for the biophysical analysis of the function of nerve, muscle, and synapse in Caenorhabditis elegans nematodes. Considerable technical progress has been made in C. elegans electrophysiology in the decade since the initial publication of this technique. Today, most, if not all, electrophysiological studies that can be done in larger animal preparations can also be done in C. elegans. This chapter has two main goals. The first is to present to a broad audience the many techniques available for patch-clamp analysis of neurons, muscles, and synapses in C. elegans. The second is to provide a methodological introduction to the techniques for patch clamping C. elegans neurons and body-wall muscles in vivo, including emerging methods for optogenetic stimulation coupled with postsynaptic recording. We also present samples of the cell-intrinsic and postsynaptic ionic currents that can be measured in C. elegans nerves and muscles.


Current Biology | 2018

Multifunctional Wing Motor Control of Song and Flight

Angela O’Sullivan; Theodore H. Lindsay; Anna Prudnikova; Balazs Erdi; Michael H. Dickinson; Anne C. von Philipsborn

Multifunctional motor systems produce distinct output patterns that are dependent on behavioral context, posing a challenge to underlying neuronal control. Flies use their wings for flight and the production of a patterned acoustic signal, the male courtship song, employing in both cases a small set of wing muscles and corresponding motor neurons. We took first steps toward elucidating the neuronal control mechanisms of this multifunctional motor system by live imaging of muscle ensemble activity patterns during song and flight, and we established the functional role of a comprehensive set of wing muscle motor neurons by silencing experiments. Song and flight rely on distinct configurations of neuromuscular activity, with most, but not all, flight muscles and their corresponding motor neurons contributing to song and shaping its acoustic parameters. The two behaviors are exclusive, and the neuronal command for flight overrides the command for song. The neuromodulator octopamine is a candidate for selectively stabilizing flight, but not song motor patterns.


Methods in Cell Biology | 2012

Chapter 14 – Electrophysiological Methods for Caenorhabditis elegans Neurobiology

Miriam B. Goodman; Theodore H. Lindsay; Shawn R. Lockery; Janet E. Richmond

Patch-clamp electrophysiology is a technique of choice for the biophysical analysis of the function of nerve, muscle, and synapse in Caenorhabditis elegans nematodes. Considerable technical progress has been made in C. elegans electrophysiology in the decade since the initial publication of this technique. Today, most, if not all, electrophysiological studies that can be done in larger animal preparations can also be done in C. elegans. This chapter has two main goals. The first is to present to a broad audience the many techniques available for patch-clamp analysis of neurons, muscles, and synapses in C. elegans. The second is to provide a methodological introduction to the techniques for patch clamping C. elegans neurons and body-wall muscles in vivo, including emerging methods for optogenetic stimulation coupled with postsynaptic recording. We also present samples of the cell-intrinsic and postsynaptic ionic currents that can be measured in C. elegans nerves and muscles.


Cell | 2015

Global Brain Dynamics Embed the Motor Command Sequence of Caenorhabditis elegans

Saul Kato; Harris S. Kaplan; Tina Schrödel; Susanne Skora; Theodore H. Lindsay; Eviatar Yemini; Shawn R. Lockery; Manuel Zimmer

Collaboration


Dive into the Theodore H. Lindsay's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Janet E. Richmond

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Michael H. Dickinson

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rebecca A. Lindsay

Children's Hospital Los Angeles

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge