Theodore M. Webster
Agricultural Research Service
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Theodore M. Webster.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Todd A. Gaines; Wenli Zhang; Dafu Wang; Bekir Bukun; Stephen Chisholm; Dale L. Shaner; Scott J. Nissen; William L. Patzoldt; Patrick J. Tranel; A. Stanley Culpepper; Timothy L. Grey; Theodore M. Webster; William K. Vencill; R. Douglas Sammons; Jiming Jiang; Christopher Preston; Jan E. Leach; Philip Westra
The herbicide glyphosate became widely used in the United States and other parts of the world after the commercialization of glyphosate-resistant crops. These crops have constitutive overexpression of a glyphosate-insensitive form of the herbicide target site gene, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). Increased use of glyphosate over multiple years imposes selective genetic pressure on weed populations. We investigated recently discovered glyphosate-resistant Amaranthus palmeri populations from Georgia, in comparison with normally sensitive populations. EPSPS enzyme activity from resistant and susceptible plants was equally inhibited by glyphosate, which led us to use quantitative PCR to measure relative copy numbers of the EPSPS gene. Genomes of resistant plants contained from 5-fold to more than 160-fold more copies of the EPSPS gene than did genomes of susceptible plants. Quantitative RT-PCR on cDNA revealed that EPSPS expression was positively correlated with genomic EPSPS relative copy number. Immunoblot analyses showed that increased EPSPS protein level also correlated with EPSPS genomic copy number. EPSPS gene amplification was heritable, correlated with resistance in pseudo-F2 populations, and is proposed to be the molecular basis of glyphosate resistance. FISH revealed that EPSPS genes were present on every chromosome and, therefore, gene amplification was likely not caused by unequal chromosome crossing over. This occurrence of gene amplification as an herbicide resistance mechanism in a naturally occurring weed population is particularly significant because it could threaten the sustainable use of glyphosate-resistant crop technology.
Weed Science | 2012
Jason K. Norsworthy; Sarah M. Ward; David R. Shaw; Rick Llewellyn; Robert L. Nichols; Theodore M. Webster; Kevin W. Bradley; George B. Frisvold; Stephen B. Powles; Nilda R. Burgos; William W. Witt; Michael Barrett
Herbicides are the foundation of weed control in commercial crop-production systems. However, herbicide-resistant (HR) weed populations are evolving rapidly as a natural response to selection pressure imposed by modern agricultural management activities. Mitigating the evolution of herbicide resistance depends on reducing selection through diversification of weed control techniques, minimizing the spread of resistance genes and genotypes via pollen or propagule dispersal, and eliminating additions of weed seed to the soil seedbank. Effective deployment of such a multifaceted approach will require shifting from the current concept of basing weed management on single-year economic thresholds.
Weed Science | 2006
A. Stanley Culpepper; Timothy L. Grey; William K. Vencill; Jeremy M. Kichler; Theodore M. Webster; Steve M. Brown; Alan C. York; Jerry W. Davis; Wayne W. Hanna
Abstract A glyphosate-resistant Palmer amaranth biotype was confirmed in central Georgia. In the field, glyphosate applied to 5- to 13-cm-tall Palmer amaranth at three times the normal use rate of 0.84 kg ae ha−1 controlled this biotype only 17%. The biotype was controlled 82% by glyphosate at 12 times the normal use rate. In the greenhouse, I50 values (rate necessary for 50% inhibition) for visual control and shoot fresh weight, expressed as percentage of the nontreated, were 8 and 6.2 times greater, respectively, with the resistant biotype compared with a known glyphosate-susceptible biotype. Glyphosate absorption and translocation and the number of chromosomes did not differ between biotypes. Shikimate was detected in leaf tissue of the susceptible biotype treated with glyphosate but not in the resistant biotype. Nomenclature: Glyphosate; Palmer amaranth, Amaranthus palmeri S. Wats; AMAPA.
Weed Science | 2012
William K. Vencill; Robert L. Nichols; Theodore M. Webster; John K. Soteres; Carol A. Mallory-Smith; Nilda R. Burgos; William G. Johnson; Marilyn R. McClelland
This is the publisher’s final pdf. The published article is copyrighted by the Weed Science Society of America and can be found at: http://wssajournals.org/loi/wees. To the best of our knowledge, one or more authors of this paper were federal employees when contributing to this work.
Weed Technology | 2013
Sarah M. Ward; Theodore M. Webster; Lawrence E. Steckel
Abstract In little over 20 yr, Palmer amaranth has risen from relative obscurity to its current status as one of the most widespread, troublesome, and economically damaging agronomic weeds in the southeastern U.S. Numerous factors have enabled Palmer amaranth to become such a dominant and difficult-to-control weed, including its rapid growth rate, high fecundity, genetic diversity, ability to tolerate adverse conditions, and its facility for evolving herbicide resistance. It is both a serious threat to several U.S. cropping systems and a fascinating model weed. In this paper, we review the growing body of literature on Palmer amaranth to summarize the current state of knowledge on the biology, agricultural impacts, and management of this weed, and we suggest future directions for research. Nomenclature: Palmer amaranth, Amaranthus palmeri S. Wats. AMAPA. Resumen En poco más de 20 años, Amaranthus palmeri ha salido de una relativa oscuridad a su estado actual como una de las malezas agrícolas más ampliamente distribuida, más problemática y económicamente dañina en el sureste de los Estados Unidos. Numerosos factores le han permitido a A. palmeri convertirse en una maleza tan dominante y difícil de controlar, incluyendo su rápida tasa de crecimiento, alta fecundidad, diversidad genética, habilidad para tolerar condiciones adversas, y su facilidad para evolucionar resistencia a herbicidas. Es una amenaza para varios sistemas de cultivos en los Estados Unidos, pero también es una maleza modelo fascinante. En este artículo, revisamos la cantidad creciente de literatura sobre A. palmeri para resumir el estado actual de conocimiento sobre la biología, impactos agrícolas, y manejo de esta maleza, y sugerimos futuras direcciones para su investigación.
Weed Technology | 2001
Theodore M. Webster; Gregory E. MacDonald
A survey of county extension agents was conducted in 1998 to determine the most troublesome weeds in corn, cotton, forages and pastures, peanut, small grains, soybean, tobacco, and vegetables in Georgia. The most troublesome weed statewide averaged over all crops was sicklepod. It was the most troublesome weed in cotton and soybean and among the four most troublesome weeds in corn, peanut, tobacco, and vegetables. Sicklepod was found in each of the nine climatological districts and in all the crops surveyed. Perennial nutsedge species were the second most troublesome weeds in Georgia. They ranked as the most troublesome weeds in tobacco and vegetables and were among the top five most troublesome weeds in corn, cotton, peanut, and soybean. Pigweed species were ranked third averaged over all the crops surveyed and were the second most troublesome weeds in cotton and vegetables and among the top five most troublesome species in corn, soybean, and tobacco. Morningglory species were listed as troublesome in six of the eight crops surveyed and ranked fourth overall. Similarly, Texas panicum was found in all districts and was the fifth most troublesome weed species. Texas panicum was the most troublesome weed in corn and among the top five most troublesome weeds in peanut, soybean, and tobacco. Florida beggarweed was the most troublesome weed in peanut, the second most troublesome weed in tobacco, and a top-10 weed species in corn, cotton, soybean, and vegetables, resulting in a ranking of sixth overall. Wild radish, large crabgrass, and tropic croton were the seventh through the ninth most troublesome weeds. Wild radish was the most troublesome weed of small grains and the sixth most troublesome weed of vegetables. Large crabgrass was the second most troublesome weed of forages and pastures and was reported in six other crops. Tropic croton was a troublesome weed in seven of the eight crops surveyed and was among the top five most troublesome weeds of cotton and peanut. The 10th most troublesome weed overall was bahiagrass, the most troublesome weed of forages and pastures. Nomenclature: Bahiagrass, Paspalum notatum Fluegge #3 PASNO; Florida beggarweed, Desmodium tortuosum (Sw.) DC. # DEDTO; large crabgrass, Digitaria sanguinalis L. # DIGSA; morningglory species, Ipomoea spp.; nutsedge species, Cyperus spp.; pigweed species, Amaranthus spp.; sicklepod, Senna obtusifolia (L.) Irwin and Barnaby # CASOB; Texas panicum, Panicum texanum Buckl. # PANTE; tropic croton, Croton glandulosus var. septentrionalis Muell.-Arg. # CVNGS; wild radish, Raphanus raphanistrum L. # RAPSN; corn, Zea mays L.; cotton, Gossypium hirsutum L.; peanut, Arachis hypogaea L.; soybean, Glycine max (L.) Merr.; tobacco, Nicotiana tabacum L. Additional index words: Economically important weeds, weed distributions, weed population shifts, weed survey. Abbreviations: C, Central district; EC, East-Central district; NC, North-Central district; NE, Northeastern district; NW, Northwestern district; SC, South-Central district; SE, Southeastern district; SW, Southwestern district; SWSS, Southern Weed Science Society; WC, West-Central district.
Weed Science | 2010
Theodore M. Webster; Lynn M. Sosnoskie
Abstract Introduction of glyphosate resistance into crops through genetic modification has revolutionized crop protection. Glyphosate is a broad-spectrum herbicide with favorable environmental characteristics and effective broad-spectrum weed control that has greatly improved crop protection efficiency. However, in less than a decade, the utility of this technology is threatened by the occurrence of glyphosate-tolerant and glyphosate-resistant weed species. Factors that have contributed to this shift in weed species composition in Georgia cotton production are reviewed, along with the implications of continued overreliance on this technology. Potential scenarios for managing glyphosate-resistant populations, as well as implications on the role of various sectors for dealing with this purported tragedy of the commons, are presented. Benghal dayflower, a glyphosate-tolerant species, continues to spread through Georgia and surrounding states, whereas glyphosate susceptibility in Palmer amaranth is endangered in Georgia and other cotton-producing states in the southern United States. Improved understanding of how glyphosate susceptibility in our weed species spectrum was compromised (either through occurrence of herbicide-tolerant or -resistant weed species) may allow us to avoid repeating these mistakes with the next herbicide-resistant technology. Nomenclature: Glyphosate; Benghal dayflower, Commelina benghalensis L.; Palmer amaranth, Amaranthus palmeri S. Wats; cotton, Gossypium hirsutum L.
Weed Science | 2012
Theodore M. Webster; Robert L. Nichols
Abstract Changes in the weed flora of cropping systems reflect the impacts of factors that create safe sites for weed establishment and facilitate the influx and losses to and from the soil seedbank. This analysis of the annual surveys of the Southern Weed Science Society documents changes in the weed flora of the 14 contiguous southern states since the advent of transgenic, herbicide-resistant crops. In 1994 and 2009, the top five weeds in corn were morningglories, Texas millet, broadleaf signalgrass, johnsongrass, and sicklepod; in this same period Palmer amaranth, smartweeds, and goosegrass had the greatest increases in importance in corn. In cotton, morningglories and nutsedges were among the top five most troublesome weeds in 1995 and 2009. Palmer amaranth, pigweeds, and Florida pusley were also among the five most troublesome species in 2009; the weeds with the largest increases in importance in cotton were common ragweed and two species with tolerance to glyphosate, Benghal dayflower and Florida pusley. In soybean, morningglories, nutsedges, and sicklepod were among the top five weed species in 1995 and 2009. Two species with glyphosate resistance, Palmer amaranth and horseweed, were the second and fourth most troublesome weeds of soybean in 2009. In wheat, the top four weeds in 2008 were the same as those in 1994 and included Italian ryegrass, wild garlic, wild radish, and henbit. Crop production in the southern region is a mosaic of various crop rotations, soil types, and types of tillage. During the interval between the surveys, the predominant change in weed management practices in the region and the nation was the onset and rapid dominance of the use of glyphosate in herbicide-resistant cultivars of corn, cotton, and soybean. Because of the correspondence between the effects of glyphosate on the respective weed species and the observed changes in the weed flora of the crops, it is likely the very broad use of glyphosate was a key component shaping the changes in weed flora. Only eight of the top 15 most troublesome weeds of cotton and soybean, the crops with the greatest use of glyphosate, were the same in 1995 and 2009. In contrast, in corn and wheat where adoption of glyphosate-resistant cultivars lags or is absent, 12 of the 15 most troublesome weeds were the same in 1994 and 2008. These findings show on a regional scale that weeds adapt to recurrent selection from herbicides, currently the predominant weed management tool. Future research should seek methods to hinder the rapid spread of herbicide-tolerant and evolution of herbicide-resistant weed species. As new tools are developed, research should focus on ways to preserve the efficacy of those tools through improved stewardship. Nomenclature: annual bluegrass, Poa annua L. POAAN; Benghal dayflower, Commelina benghalensis L. COMBE; broadleaf signalgrass, Urochloa platyphylla (Nash) R.D. Webster BRAPP; common ragweed, Ambrosia artemisiifolia L. AMBEL; Florida pusley Richardia scabra L. RCHSC; goosegrass Eleusine indica (L.) Gaertn. ELEIN; groundcherries, Physalis spp.; henbit, Lamium amplexicaule L. LAMAM; horseweed, Conyza canadensis (L.) Cronq. ERICA; Italian ryegrass, Lolium perenne L. ssp. multiflorum (Lam.) Husnot LOLMU; johnsongrass, Sorghum halepense (L.) Pers. SORHA; morningglories, Ipomoea spp.; nutsedges, Cyperus spp.; Palmer amaranth, Amaranthus palmeri S. Wats. AMAPA; pigweed, Amaranthus spp.; sicklepod, Senna obtusifolia (L.) H.S. Irwin & Barneby CASOB; smartweeds, Polygonum spp.; Texas millet, Urochloa texana (Buckl.) R. Webster PANTE; wild garlic, Allium vineale L. ALLVI; wild radish, Raphanus raphanistrum L. RAPRA; corn, Zea mays L.; cotton, Gossypium hirsutum L.; soybean Glycine max. (L.) Merr.; wheat, Triticum aestivum L.
Weed Technology | 2009
Aaron M. Wise; Timothy L. Grey; Eric P. Prostko; William K. Vencill; Theodore M. Webster
Abstract Palmer amaranth resistance to acetolactate synthase (ALS)–inhibiting herbicides was first identified in Georgia in 2000. Since then, complaints from peanut producers have increased concerning failure of ALS herbicides in controlling Palmer amaranth. Because efficacy of ALS herbicides can be compromised under adverse conditions, seeds from Palmer amaranth plants that escaped weed control were collected across the peanut-growing region in Georgia to investigate the cause of these reported failures. Greenhouse and growth-chamber studies were conducted using these seeds to evaluate whether weed escapes were a result of Palmer amaranth resistance to ALS herbicides. Each of the 61 accessions collected across Georgia exhibited varying levels of resistance to imazapic applied POST (< 55% control, relative to ALS-susceptible Palmer amaranth). Subsamples of the accessions were evaluated for their response to imazapic rates, which indicated variable levels of resistance across Palmer amaranth accessions. The rate of imazapic that provided 50% reduction in Palmer amaranth plant biomass (I50) for the known susceptible biotype was 0.9 g/ha of imazapic. Of the 10 accessions evaluated, 8 of them had I50 values that ranged from 3 to 297 g/ha of imazapic. The other two accessions could not be fit to the log-logistic dose–response curve and had undeterminable I50 values because of high levels of ALS resistance (> 1,400 g/ha of imazapic). Herbicide cross-resistance experiments indicated that 30 accessions were resistant to the ALS herbicides imazapic, chlorimuron, pyrithiobac, and diclosulam at the recommended field-use rates. However, each of these 30 accessions was susceptible to glyphosate. These data demonstrate that ALS-resistant Palmer amaranth occurs throughout the peanut-growing region of Georgia. Growers in Georgia will need to alter their weed-control programs in peanut to include herbicides with multiple modes of action that do not rely on ALS herbicides for effective Palmer amaranth control. Nomenclature: Chlorimuron; diclosulam; imazapic; pyrithiobac; Palmer amaranth, Amaranthus palmeri L; peanut, Arachis hypogea L.
Weed Technology | 2004
A. Stanley Culpepper; J. T. Flanders; Alan C. York; Theodore M. Webster
Tropical spiderwort has recently become the most troublesome weed in Georgia cotton. Most of Georgias cotton is glyphosate resistant (GR), and glyphosate is only marginally effective on tropical spiderwort. An experiment was conducted at four locations to determine tropical spiderwort control in GR cotton by 27 herbicide systems. Treatments consisted of three early-postemergence over-the-top (POT) herbicide options and nine late–postemergence-directed (LPD) options arranged factorially. Glyphosate POT controlled tropical spiderwort only 53% 21 d after treatment (DAT). Glyphosate plus pyrithiobac or S-metolachlor controlled tropical spiderwort 60 and 80%, respectively. Pyrithiobac improved control of emerged spiderwort, whereas S-metolachlor provided residual control. Pooled over POT treatments, glyphosate LPD controlled tropical spiderwort 70% 21 DAT. Dimethipin mixed with glyphosate did not improve control. Carfentrazone, diuron, or flumioxazin mixed with glyphosate LPD improved control 9 to 15%. MSMA and MSMA plus flumioxazin were 8 and 19% more effective than glyphosate LPD. At time of cotton harvest, systems without residual herbicides at LPD controlled tropical spiderwort 42 to 45% compared with 64 to 76% with LPD treatments that included diuron or flumioxazin. Nomenclature: Carfentrazone; dimethipin; diuron; flumioxazin; glyphosate; MSMA; pyrithiobac; S-metolachlor; tropical spiderwort, Commelina benghalensis L.; cotton, Gossypium hirsutum L. ‘DP 458 B/RR’, ‘FM 989 B/RR’, ‘ST 4793 BR’. Additional index words: Invasive weed, noxious weed, weed shift. Abbreviations: DAP, days after planting; DAT, days after treatment; GR, glyphosate resistant; LPD, late postemergence directed; POT, postemergence over-the-top.