Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Theodore Otto Johnson is active.

Publication


Featured researches published by Theodore Otto Johnson.


Nature Reviews Drug Discovery | 2002

Protein tyrosine phosphatase 1B inhibitors for diabetes.

Theodore Otto Johnson; Jacques Ermolieff; Michael R. Jirousek

Increased incidence of type 2 diabetes mellitus and obesity has elevated the medical need for new agents to treat these disease states. Resistance to the hormones insulin and leptin are hallmarks of both type 2 diabetes and obesity. Drugs that can ameliorate this resistance should be effective in treating type 2 diabetes and possibly obesity. Protein tyrosine phosphatase 1B (PTP1B) is thought to function as a negative regulator of insulin and leptin signal transduction. This article reviews PTP1B as a novel target for type 2 diabetes, and looks at the challenges in developing small-molecule inhibitors of this phosphatase.


Nature Chemical Biology | 2014

A road map to evaluate the proteome-wide selectivity of covalent kinase inhibitors

Bryan R. Lanning; Landon R. Whitby; Melissa M. Dix; John Douhan; Adam M. Gilbert; Erik C. Hett; Theodore Otto Johnson; Chris Joslyn; John Charles Kath; Sherry Niessen; Lee Roberts; Mark E. Schnute; Chu Wang; Jonathan J. Hulce; Baoxian Wei; Laurence O Whiteley; Matthew Merrill Hayward; Benjamin F. Cravatt

Kinases are principal components of signal transduction pathways and the focus of intense basic and drug discovery research. Irreversible inhibitors that covalently modify non-catalytic cysteines in kinase active-sites have emerged as valuable probes and approved drugs. Many protein classes, however, possess functional cysteines and therefore understanding the proteome-wide selectivity of covalent kinase inhibitors is imperative. Here, we accomplish this objective using activity-based protein profiling coupled with quantitative mass spectrometry to globally map the targets, both specific and non-specific, of covalent kinase inhibitors in human cells. Many of the specific off-targets represent non-kinase proteins that, interestingly, possess conserved, active-site cysteines. We define windows of selectivity for covalent kinase inhibitors and show that, when these windows are exceeded, rampant proteome-wide reactivity and kinase target-independent cell death conjointly occur. Our findings, taken together, provide an experimental roadmap to illuminate opportunities and surmount challenges for the development of covalent kinase inhibitors.


Journal of Chemical Information and Modeling | 2007

Evaluation of a published in silico model and construction of a novel bayesian model for predicting phospholipidosis inducing potential

Dennis J. Pelletier; Daniel K. Gehlhaar; Anne Tilloy-Ellul; Theodore Otto Johnson; Nigel Greene

The identification of phospholipidosis (PPL) during preclinical testing in animals is a recognized problem in the pharmaceutical industry. Depending on the intended indication and dosing regimen, PPL can delay or stop development of a compound in the drug discovery process. Therefore, for programs and projects where a PPL finding would have adverse impact on the success of the project, it would be desirable to be able to rapidly identify and screen out those compounds with the potential to induce PPL as early as possible. Currently, electron microscopy is the gold standard method for identifying phospholipidosis, but it is low-throughput and resource-demanding. Therefore, a low-cost, high-throughput screening strategy is required to overcome these limitations and be applicable in the drug discovery cycle. A recent publication by Ploemen et al. (Exp. Toxicol. Pathol. 2004, 55, 347-55) describes a method using the computed physicochemical properties pKa and ClogP as part of a simple calculation to determine a compounds potential to induce PPL. We have evaluated this method using a set of 201 compounds, both public and proprietary, with known in vivo PPL-inducing ability and have found the overall concordance to be 75%. We have proposed simple modifications to the model rules, which improve the models concordance to 80%. Finally, we describe the development of a Bayesian model using the same compound set and found its overall concordance to be 83%.


Bioorganic & Medicinal Chemistry Letters | 2002

Structure-Based Design, Synthesis, and Biological Evaluation of Irreversible Human Rhinovirus 3C Protease Inhibitors. Part 7: Structure–Activity Studies of Bicyclic 2-Pyridone-Containing Peptidomimetics

Peter S Dragovich; Thomas J. Prins; Ru Zhou; Theodore Otto Johnson; Edward L. Brown; Fausto Maldonado; Shella A Fuhrman; Leora S. Zalman; Amy K. Patick; David Matthews; Xinjun Hou; James W. Meador; Rose Ann Ferre; Stephen T. Worland

The structure-based design, chemical synthesis, and biological evaluation of bicyclic 2-pyridone-containing human rhinovirus (HRV) 3C protease (3CP) inhibitors are described. An optimized compound is shown to exhibit antiviral activity when tested against a variety of HRV serotypes (EC(50)s ranging from 0.037 to 0.162 microM).


Bioorganic & Medicinal Chemistry Letters | 2009

N-(Pyridin-2-yl) arylsulfonamide inhibitors of 11β-hydroxysteroid dehydrogenase type 1: Discovery of PF-915275

Michael Siu; Theodore Otto Johnson; Yong Wang; Sajiv K. Nair; Wendy D. Taylor; Stephan James Cripps; Jean Matthews; Martin Paul Edwards; Thomas A. Pauly; Jacques Ermolieff; Arturo Castro; Natilie Hosea; Amy LaPaglia; Andrea Fanjul; Jennifer E. Vogel

N-(Pyridin-2-yl) arylsulfonamides are identified as inhibitors of 11beta-hydroxysteroid dehydrogenase type 1 (11betaHSD1), an enzyme that catalyzes the reduction of the glucocorticoid cortisone to cortisol. Dysregulation of glucocorticoids has been implicated in the pathogenesis of diabetes and the metabolic syndrome. In this Letter, we present the development of an initial lead to an efficient ligand with improved physiochemical properties using a deletion strategy. This strategy allowed for further optimization of potency leading to the discovery of the clinical candidate PF-915275.


ACS Medicinal Chemistry Letters | 2013

Discovery of the Highly Potent PI3K/mTOR Dual Inhibitor PF-04979064 through Structure-Based Drug Design.

Hengmiao Cheng; Chunze Li; Simon Bailey; Sangita M. Baxi; Lance Goulet; Lisa Guo; Jacqui Elizabeth Hoffman; Ying Jiang; Theodore Otto Johnson; Ted W. Johnson; Daniel R. Knighton; John Li; Kevin Liu; Zhengyu Liu; Matthew A. Marx; Marlena Walls; Peter A. Wells; Min-Jean Yin; JinJiang Zhu; Michael Zientek

PI3K, AKT, and mTOR are key kinases from PI3K signaling pathway being extensively pursued to treat a variety of cancers in oncology. To search for a structurally differentiated back-up candidate to PF-04691502, which is currently in phase I/II clinical trials for treating solid tumors, a lead optimization effort was carried out with a tricyclic imidazo[1,5]naphthyridine series. Integration of structure-based drug design and physical properties-based optimization yielded a potent and selective PI3K/mTOR dual kinase inhibitor PF-04979064. This manuscript discusses the lead optimization for the tricyclic series, which both improved the in vitro potency and addressed a number of ADMET issues including high metabolic clearance mediated by both P450 and aldehyde oxidase (AO), poor permeability, and poor solubility. An empirical scaling tool was developed to predict human clearance from in vitro human liver S9 assay data for tricyclic derivatives that were AO substrates.


Journal of Medicinal Chemistry | 2017

Discovery of N-((3R,4R)-4-Fluoro-1-(6-((3-methoxy-1-methyl-1H-pyrazol-4-yl)amino)-9-methyl-9H-purin-2-yl)pyrrolidine-3-yl)acrylamide (PF-06747775) through Structure-Based Drug Design: A High Affinity Irreversible Inhibitor Targeting Oncogenic EGFR Mutants with Selectivity over Wild-Type EGFR.

Simon Paul Planken; Douglas Carl Behenna; Sajiv Krishnan Nair; Theodore Otto Johnson; Asako Nagata; Chau Almaden; Simon Bailey; T. Eric Ballard; Louise Bernier; Hengmiao Cheng; Sujin Cho-Schultz; Deepak Dalvie; Judith Gail Deal; Dac M. Dinh; Martin Paul Edwards; Rose Ann Ferre; Ketan S. Gajiwala; Michelle Hemkens; Robert Steven Kania; John Charles Kath; Jean Matthews; Brion W. Murray; Sherry Niessen; Suvi T. M. Orr; Mason Alan Pairish; Neal W. Sach; Hong Shen; Manli Shi; James Solowiej; Khanh Tran

Mutant epidermal growth factor receptor (EGFR) is a major driver of non-small-cell lung cancer (NSCLC). Marketed first generation inhibitors, such as erlotinib, effect a transient beneficial response in EGFR mutant NSCLC patients before resistance mechanisms render these inhibitors ineffective. Secondary oncogenic EGFR mutations account for approximately 50% of relapses, the most common being the gatekeeper T790M substitution that renders existing therapies ineffective. The discovery of PF-06459988 (1), an irreversible pyrrolopyrimidine inhibitor of EGFR T790M mutants, was recently disclosed.1 Herein, we describe our continued efforts to achieve potency across EGFR oncogenic mutations and improved kinome selectivity, resulting in the discovery of clinical candidate PF-06747775 (21), which provides potent EGFR activity against the four common mutants (exon 19 deletion (Del), L858R, and double mutants T790M/L858R and T790M/Del), selectivity over wild-type EGFR, and desirable ADME properties. Compound 21 is currently being evaluated in phase-I clinical trials of mutant EGFR driven NSCLC.


Annual Reports in Medicinal Chemistry | 2006

Glucokinase Activators for the Treatment of Type 2 Diabetes

Theodore Otto Johnson; Paul S. Humphries

Publisher Summary This chapter discusses the mechanism of enzymatic catalysis by glucokinase (GK), its function in the liver and pancreatic β-cells, and key publications on small-molecule GK activators (GKAs) that report full characterization. Key compound disclosures from patents are also discussed. Studies have ascertained an essential function for GK, also known as hexokinase IV or hexokinase D, in regulating glucose homeostasis. GK is expressed mainly in the two tissues of high importance to glucose homeostasis and therapeutic strategies to treat type 2 diabetes (T2D), pancreatic β-cells, and hepatocytes. In the liver, GK functions as a high-capacity enzyme that removes glucose from the blood and helps it react with adenosine triphosphate (ATP) to form glucose-6-phosphate (G-6-P)—the first biosynthetic step in the conversion of glucose to its storage form, glycogen. In pancreatic β-cells, through its ability to sense glucose concentrations, GK operates as a glucose sensor to determine the threshold for glucose-stimulated insulin release (GSIR). To seek out small molecules that increase GK enzymatic activity, a library of 120,000 structurally diverse synthetic compounds are screened. A solitary hit was identified from this high-throughput screening (HTS) enzyme coupled assay, in the presence of GK regulatory protein (GKRP). Ensuing kinetic analysis, in the absence of GKRP, confirmed the capacity of the hit molecule to directly bind and activate GK, rather than activating by disrupting the interaction of GKRP with GK.


Bioorganic & Medicinal Chemistry Letters | 2013

Pyrimidone-based series of glucokinase activators with alternative donor-acceptor motif.

Kevin J. Filipski; Angel Guzman-Perez; Jianwei Bian; Christian Perreault; Gary E. Aspnes; Mary Theresa Didiuk; Robert L. Dow; Richard F. Hank; Christopher S. Jones; Robert John Maguire; Meihua Tu; Dongxiang Zeng; Shenping Liu; John D. Knafels; John Litchfield; Karen Atkinson; David R. Derksen; Francis Bourbonais; Ketan S. Gajiwala; Michael J. Hickey; Theodore Otto Johnson; Paul S. Humphries; Jeffrey A. Pfefferkorn

Glucokinase activators are a class of experimental agents under investigation as a therapy for Type 2 diabetes mellitus. An X-ray crystal structure of a modestly potent agent revealed the potential to substitute the common heterocyclic amide donor-acceptor motif for a pyridone moiety. We have successfully demonstrated that both pyridone and pyrimidone heterocycles can be used as a potent donor-acceptor substituent. Several sub-micromolar analogs that possess the desired partial activator profile were synthesized and characterized. Unfortunately, the most potent activators suffered from sub-optimal pharmacokinetic properties. Nonetheless, these donor-acceptor motifs may find utility in other glucokinase activator series or beyond.


Bioorganic & Medicinal Chemistry Letters | 2013

N-(Pyridin-2-yl) arylsulfonamide inhibitors of 11β-hydroxysteroid dehydrogenase type 1: Strategies to eliminate reactive metabolites

Sajiv K. Nair; Jean Matthews; Stephan James Cripps; Hengmiao Cheng; Jacqui Elizabeth Hoffman; Christopher Ronald Smith; Stanley William Kupchinsky; Michael Siu; Wendy D. Taylor; Yong Wang; Theodore Otto Johnson; Klaus Ruprecht Dress; Martin Paul Edwards; Sue Zhou; Natilie Hosea; Amy LaPaglia; Ping Kang; Arturo Castro; Jacques Ermolieff; Andrea Fanjul; Jennifer E. Vogel; Paul A. Rejto; Deepak Dalvie

N-(Pyridin-2-yl) arylsulfonamides 1 and 2 (PF-915275) were identified as potent inhibitors of 11β-hydroxysteroid dehydrogenase type 1. A screen for bioactivation revealed that these compounds formed glutathione conjugates. This communication presents the results of a risk benefit analysis carried out to progress 2 (PF-915275) to a clinical study and the strategies used to eliminate reactive metabolites in this series of inhibitors. Based on the proposed mechanism of bioactivation and structure-activity relationships, design efforts led to N-(pyridin-2-yl) arylsulfonamides such as 18 and 20 that maintained potent 11β-hydroxysteroid dehydrogenase type 1 activity, showed exquisite pharmacokinetic profiles, and were negative in the reactive metabolite assay.

Collaboration


Dive into the Theodore Otto Johnson's collaboration.

Researchain Logo
Decentralizing Knowledge