Theodore Reber
University of Colorado Boulder
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Theodore Reber.
Nature Physics | 2013
Yue Cao; Justin Waugh; Xiuwen Zhang; Jun-Wei Luo; Q. Wang; Theodore Reber; Sung-Kwan Mo; Z. Xu; A. Yang; John Schneeloch; Genda Gu; Matthew Brahlek; Namrata Bansal; Seongshik Oh; Alex Zunger; D. S. Dessau
Topological insulators are novel macroscopic quantum-mechanical phase of matter, which hold promise for realizing some of the most exotic particles in physics as well as application towards spintronics and quantum computation. In all the known topological insulators, strong spin-orbit coupling is critical for the generation of the protected massless surface states. Consequently, a complete description of the Dirac state should include both the spin and orbital (spatial) parts of the wavefunction. For the family of materials with a single Dirac cone, theories and experiments agree qualitatively, showing the topological state has a chiral spin texture that changes handedness across the Dirac point (DP), but they differ quantitatively on how the spin is polarized. Limited existing theoretical ideas predict chiral local orbital angular momentum on the two sides of the DP. However, there have been neither direct measurements nor calculations identifying the global symmetry of the spatial wavefunction. Here we present the first results from angle-resolved photoemission experiment and first-principles calculation that both show, counter to current predictions, the in-plane orbital wavefunctions for the surface states of Bi2Se3 are asymmetric relative to the DP, switching from being tangential to the k-space constant energy surfaces above DP, to being radial to them below the DP. Because the orbital texture switch occurs exactly at the DP this effect should be intrinsic to the topological physics, constituting an essential yet missing aspect in the description of the topological Dirac state. Our results also indicate that the spin texture may be more complex than previously reported, helping to reconcile earlier conflicting spin resolved measurements.
Nature Physics | 2012
Theodore Reber; N. C. Plumb; Zhe Sun; Yue Cao; Q. Wang; K. McElroy; H. Iwasawa; M. Arita; J. S. Wen; Z. J. Xu; Genda Gu; Yoshiyuki Yoshida; H. Eisaki; Y. Aiura; D. S. Dessau
A Fermi arc is a disconnected segment of a Fermi surface observed in the pseudogap phase of cuprate superconductors. This simple description belies the fundamental inconsistency in the physics of Fermi arcs, specifically that such segments violate the topological integrity of the band. Efforts to resolve this contradiction of experiment and theory have focused on connecting the ends of the Fermi arc back on itself to form a pocket, with limited and controversial success. Here we show the Fermi arc, while composed of real spectral weight, lacks the quasiparticles to be a true Fermi surface. To reach this conclusion we developed a new photoemission-based technique that directly probes the interplay of pair-forming and pair-breaking processes with unprecedented precision. We find the spectral weight composing the Fermi arc is shifted from the gap edge to the Fermi energy by pair-breaking processes. While real, this weight does not form a true Fermi surface, because the quasiparticles, though significantly broadened, remain at the gap edge. This non-quasiparticle weight may account for much of the unexplained behavior of the pseudogap phase of the cuprates.
Nature Physics | 2014
Theodore Reber; N. C. Plumb; Zhe Sun; Yue Cao; Q. Wang; K. McElroy; H. Iwasawa; M. Arita; J. S. Wen; Z. J. Xu; Genda Gu; Yoshiyuki Yoshida; H. Eisaki; Y. Aiura; D. S. Dessau
A Fermi arc is a disconnected segment of a Fermi surface observed in the pseudogap phase of cuprate superconductors. This simple description belies the fundamental inconsistency in the physics of Fermi arcs, specifically that such segments violate the topological integrity of the band. Efforts to resolve this contradiction of experiment and theory have focused on connecting the ends of the Fermi arc back on itself to form a pocket, with limited and controversial success. Here we show the Fermi arc, while composed of real spectral weight, lacks the quasiparticles to be a true Fermi surface. To reach this conclusion we developed a new photoemission-based technique that directly probes the interplay of pair-forming and pair-breaking processes with unprecedented precision. We find the spectral weight composing the Fermi arc is shifted from the gap edge to the Fermi energy by pair-breaking processes. While real, this weight does not form a true Fermi surface, because the quasiparticles, though significantly broadened, remain at the gap edge. This non-quasiparticle weight may account for much of the unexplained behavior of the pseudogap phase of the cuprates.
Optics Letters | 2006
Wenjian Cai; Theodore Reber; Rafael Piestun
We define computer-generated volume holograms (CGVHs) as arbitrary 3D refractive index modulations designed to perform optical functions based on diffraction, scattering, and interference phenomena. CGVHs can differ dramatically from classical volume holograms in terms of coding possibilities, and from thin computer-generated holograms in terms of efficiency and selectivity. We propose an encoding technique for designing such holograms and demonstrate the concept by scanning focused femtosecond laser pulses to produce localized refractive index modifications in glass. These CGVHs show a significant increase in efficiency with thickness. Consequently, they are attractive for photonic integration with free-space and guided-wave devices, as well as for encoding spatial and temporal information.
Nature Communications | 2016
Yue Cao; Qiang Wang; Justin Waugh; Theodore Reber; Haoxiang Li; Xiaoqing Zhou; Stephen Parham; Seung Ryong Park; Nicholas C. Plumb; Eli Rotenberg; Jonathan D. Denlinger; Tongfei Qi; Michael Hermele; G. Cao; D. S. Dessau
The physics of doped Mott insulators remains controversial after decades of active research, hindered by the interplay among competing orders and fluctuations. It is thus highly desired to distinguish the intrinsic characters of the Mott-metal crossover from those of other origins. Here we investigate the evolution of electronic structure and dynamics of the hole-doped pseudospin-1/2 Mott insulator Sr2IrO4. The effective hole doping is achieved by replacing Ir with Rh atoms, with the chemical potential immediately jumping to or near the top of the lower Hubbard band. The doped iridates exhibit multiple iconic low-energy features previously observed in doped cuprates—pseudogaps, Fermi arcs and marginal-Fermi-liquid-like electronic scattering rates. We suggest these signatures are most likely an integral part of the materials proximity to the Mott state, rather than from many of the most claimed mechanisms, including preformed electron pairing, quantum criticality or density-wave formation.
Physical Review B | 2014
J. D. Rameau; Theodore Reber; H.-B. Yang; S. Akhanjee; G. D. Gu; P. D. Johnson; S. Campbell
Perfect fluids are characterized as having the smallest ratio of shear viscosity to entropy density, η/s, consistent with quantum uncertainty and causality. So far, nearly perfect fluids have only been observed in the quark-gluon plasma and in unitary atomic Fermi gases, exotic systems that are amongst the hottest and coldest objects in the known universe, respectively. We use angle resolved photoemission spectroscopy to measure the temperature dependence of an electronic analog of η/s in an optimally doped cuprate high-temperature superconductor, finding it too is a nearly perfect fluid around, and above, its superconducting transition temperature Tc.
New Journal of Physics | 2013
N. C. Plumb; Theodore Reber; Hideaki Iwasawa; Y. Cao; M. Arita; Kenya Shimada; Hirofumi Namatame; M. Taniguchi; Yoshiyuki Yoshida; H. Eisaki; Y. Aiura; D. S. Dessau
Ultrahigh resolution angle-resolved photoemission spectroscopy with low-energy photons is used to study the detailed momentum dependence of the well-known nodal ?kink? dispersion anomaly of Bi2Sr2CaCu2O8+?. We find that the kinks location transitions smoothly from a maximum binding energy of about 65?meV at the node of the d-wave superconducting gap to 55?meV roughly one-third of the way to the antinode. Meanwhile, the self-energy spectrum corresponding to the kink dramatically sharpens and intensifies beyond a critical point in momentum space. We discuss the possible bosonic spectrum in energy and momentum space that can couple to the k-space dispersion of the electronic kinks.
conference on lasers and electro-optics | 2005
Wenjian Cai; Theodore Reber; Rafael Piestun
We report the design of three-dimensional computer-generated holograms. We fabricated holograms embedded in glass using femtosecond laser induced breakdown and showed three-dimensional effects to improve efficiency.
Nature Communications | 2018
Haoxiang Li; Xiaoqing Zhou; Stephen Parham; Theodore Reber; Helmuth Berger; Gerald B. Arnold; D. S. Dessau
Strong diffusive or incoherent electronic correlations are the signature of the strange-metal normal state of the cuprate superconductors, with these correlations considered to be undressed or removed in the superconducting state. A critical question is if these correlations are responsible for the high-temperature superconductivity. Here, utilizing a development in the analysis of angle-resolved photoemission data, we show that the strange-metal correlations don’t simply disappear in the superconducting state, but are instead converted into a strongly renormalized coherent state, with stronger normal state correlations leading to stronger superconducting state renormalization. This conversion begins well above TC at the onset of superconducting fluctuations and it greatly increases the number of states that can pair. Therefore, there is positive feedback––the superconductive pairing creates the conversion that in turn strengthens the pairing. Although such positive feedback should enhance a conventional pairing mechanism, it could potentially also sustain an electronic pairing mechanism.Whether the normal state electronic correlations in cuprates are responsible for superconductivity remains elusive. Here, Li et al. report that such correlations turn into a renormalized coherent state starting well above the superconducting transition, and it leads to a strengthened superconductive pairing.
Physical Review B | 2013
Theodore Reber; N. C. Plumb; Yue Cao; Z. T. Sun; Qiang Wang; Kyle McElroy; H. Iwasawa; M. Arita; J. S. Wen; Z. J. Xu; Genda Gu; Yoshiyuki Yoshida; H. Eisaki; Y. Aiura; D. S. Dessau
Collaboration
Dive into the Theodore Reber's collaboration.
National Institute of Advanced Industrial Science and Technology
View shared research outputsNational Institute of Advanced Industrial Science and Technology
View shared research outputs