Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Theodore Spilker is active.

Publication


Featured researches published by Theodore Spilker.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Burkholderia Xenovorans LB400 Harbors a Multi-Replicon, 9.73-Mbp Genome Shaped for Versatility

Patrick Chain; Vincent J. Denef; Konstantinos T. Konstantinidis; Lisa M. Vergez; Loreine Agulló; Valeria Latorre Reyes; Loren Hauser; Macarena Córdova; Luis Gómez; Myriam González; Miriam Land; Victoria Lao; Frank W. Larimer; John J. LiPuma; Eshwar Mahenthiralingam; Stephanie Malfatti; Christopher J. Marx; J. Jacob Parnell; Alban Ramette; Paul G. Richardson; Michael Seeger; Daryl J. Smith; Theodore Spilker; Woo Jun Sul; Tamara V. Tsoi; Luke E. Ulrich; Igor B. Zhulin; James M. Tiedje

Burkholderia xenovorans LB400 (LB400), a well studied, effective polychlorinated biphenyl-degrader, has one of the two largest known bacterial genomes and is the first nonpathogenic Burkholderia isolate sequenced. From an evolutionary perspective, we find significant differences in functional specialization between the three replicons of LB400, as well as a more relaxed selective pressure for genes located on the two smaller vs. the largest replicon. High genomic plasticity, diversity, and specialization within the Burkholderia genus are exemplified by the conservation of only 44% of the genes between LB400 and Burkholderia cepacia complex strain 383. Even among four B. xenovorans strains, genome size varies from 7.4 to 9.73 Mbp. The latter is largely explained by our findings that >20% of the LB400 sequence was recently acquired by means of lateral gene transfer. Although a range of genetic factors associated with in vivo survival and intercellular interactions are present, these genetic factors are likely related to niche breadth rather than determinants of pathogenicity. The presence of at least eleven “central aromatic” and twenty “peripheral aromatic” pathways in LB400, among the highest in any sequenced bacterial genome, supports this hypothesis. Finally, in addition to the experimentally observed redundancy in benzoate degradation and formaldehyde oxidation pathways, the fact that 17.6% of proteins have a better LB400 paralog than an ortholog in a different genome highlights the importance of gene duplication and repeated acquirement, which, coupled with their divergence, raises questions regarding the role of paralogs and potential functional redundancies in large-genome microbes.


Journal of Clinical Microbiology | 2004

PCR-Based Assay for Differentiation of Pseudomonas aeruginosa from Other Pseudomonas Species Recovered from Cystic Fibrosis Patients

Theodore Spilker; Tom Coenye; Peter Vandamme; John J. LiPuma

ABSTRACT Pseudomonas aeruginosa is the major opportunistic bacterial pathogen in persons with cystic fibrosis (CF); pulmonary infection occurs in approximately 80% of adult CF patients. Much of CF patient management depends on accurate identification of P. aeruginosa from sputum culture. However, identification of this species may be problematic due to the marked phenotypic variability demonstrated by CF sputum isolates and the presence of other closely related species. To facilitate species identification, we used 16S ribosomal DNA (rDNA) sequence data to design PCR assays intended to provide genus- or species-level identification. Both assays yielded DNA fragments of the predicted size. We tested 42 culture collection strains (including 14 P. aeruginosa strains and 28 strains representing 16 other closely related Pseudomonas species) and 43 strains that had been previously identified as belonging to 28 nonpseudomonal species also recovered from CF patient sputum. Based on these 85 strains, the specificity and sensitivity of both assays were 100%. To further assess the utility of the PCR assays, we tested 66 recent CF sputum isolates. The results indicated that preliminary phenotypic testing had misidentified several isolates. The 16S rDNA sequence was determined for 38 isolates, and in all cases it confirmed the results of the PCR assays. Thus, we have designed two PCR assays: one is specific for the genus Pseudomonas, while the other is specific for P. aeruginosa. Both assays show 100% sensitivity and specificity.


Journal of Clinical Microbiology | 2002

Characterization of Unusual Bacteria Isolated from Respiratory Secretions of Cystic Fibrosis Patients and Description of Inquilinus limosus gen. nov., sp. nov.

Tom Coenye; Johan Goris; Theodore Spilker; Peter Vandamme; John J. LiPuma

ABSTRACT Using a polyphasic approach (including cellular protein and fatty acid analysis, biochemical characterization, 16S ribosomal DNA sequencing, and DNA-DNA hybridizations), we characterized 51 bacterial isolates recovered from respiratory secretions of cystic fibrosis (CF) patients. Our analyses showed that 24 isolates belong to taxa that have so far not (or only rarely) been reported from CF patients. These taxa include Acinetobacter sp., Bordetella hinzii, Burkholderia fungorum, Comamonas testosteroni, Chryseobacterium sp., Herbaspirillum sp., Moraxella osloensis, Pandoraea genomospecies 4, Ralstonia gilardii, Ralstonia mannitolilytica, Rhizobium radiobacter, and Xanthomonas sp. In addition, one isolate most likely represents a novel Ralstonia species, whereas nine isolates belong to novel taxa within the α-Proteobacteria. Eight of these latter isolates are classified into the novel genus Inquilinus gen. nov. as Inquilinus limosus gen. nov., sp. nov., or as Inquilinus sp. The remaining 17 isolates are characterized as members of the family Enterobacteriaceae. The recovery of these species suggests that the CF lung is an ecological niche capable of supporting the growth of a wide variety of bacteria rarely seen in clinical samples. Elucidation of the factors that account for the association between these unusual species and the respiratory tract of CF patients may provide important insights into the pathophysiology of CF infection. Because accurate identification of these organisms in the clinical microbiology laboratory may be problematic, the present study highlights the utility of reference laboratories capable of identifying unusual species recovered from CF sputum.


The Lancet | 2002

An epidemic Burkholderia cepacia complex strain identified in soil

John J. LiPuma; Theodore Spilker; Tom Coenye; Carlos F. Gonzalez

Life threatening infection with species of the Burkholderia cepacia complex frequently occurs as a result of cross infection among individuals with cystic fibrosis. Stringent infection control measures have decreased but not eliminated such infection in this vulnerable population, implying that non-patient reservoirs contribute to ongoing acquisition. However, strains common to both the natural environment and patients with cystic fibrosis have not yet been described. By use of various genotyping methods, we have identified from agricultural soil the B cepacia genomovar III strain that is most frequently recovered from cystic fibrosis patients in the mid-Atlantic region of the USA. This finding indicates that human pathogenic strains are not necessarily distinct from environmental strains, and might help explain ongoing human acquisition despite strict infection control measures.


Journal of Clinical Microbiology | 2005

Distribution of Burkholderia cepacia Complex Species among Isolates Recovered from Persons with or without Cystic Fibrosis

Rebecca Reik; Theodore Spilker; John J. LiPuma

ABSTRACT We analyzed Burkholderia cepacia complex isolates recovered from 1,218 cystic fibrosis (CF) patients and 90 patients without CF. Although all B. cepacia complex species were found, some were rarely identified. The distribution of species differed between the CF and non-CF populations and appears to be changing over time among CF patients.


Journal of Clinical Microbiology | 2002

Comparative Assessment of Genotyping Methods for Epidemiologic Study of Burkholderia cepacia Genomovar III

Tom Coenye; Theodore Spilker; Alissa Martin; John J. LiPuma

ABSTRACT We analyzed a collection of 97 well-characterized Burkholderia cepacia genomovar III isolates to evaluate multiple genomic typing systems, including pulsed-field gel electrophoresis (PFGE), BOX-PCR fingerprinting and random amplified polymorphic DNA (RAPD) typing. The typeability, reproducibility, and discriminatory power of these techniques were evaluated, and the results were compared to each other and to data obtained in previous studies by using multilocus restriction typing (MLRT). All methods showed excellent typeability. PFGE with SpeI was more reproducible than RAPD and BOX-PCR fingerprinting. The discriminatory power of the methods was variable, with PFGE and RAPD typing having a higher index of discrimination than BOX-PCR fingerprinting. In general, the results obtained by PFGE, BOX-PCR fingerprinting, and MLRT were in good agreement. Our data indicate that different genomic-based methods can be used to type B. cepacia genomovar III isolates depending on the situation and the epidemiologic question being addressed. PFGE and RAPD fingerprinting are best suited to addressing small-scale studies (i.e., local epidemiology), whereas BOX-PCR fingerprinting is more appropriate for large-scale studies (i.e., global epidemiology). In this regard, BOX-PCR fingerprinting can be considered a rapid and easy alternative to MLRT.


Fems Microbiology Letters | 2003

Evidence of transmission of Burkholderia cepacia, Burkholderia multivorans and Burkholderia dolosa among persons with cystic fibrosis

Rhiannon Biddick; Theodore Spilker; Alissa Martin; John J. LiPuma

Previous studies have identified specific Burkholderia cepacia complex strains that are common to multiple persons with cystic fibrosis (CF). Such so-called epidemic strains have an apparent enhanced capacity for inter-patient spread and reside primarily in Burkholderia cenocepacia (formerly B. cepacia complex genomovar III). We sought to identify strains from B. cepacia complex species other than B. cenocepacia that are similarly shared by multiple CF patients. We performed genotype analysis of 360 recent sputum culture isolates from 360 persons residing in 29 cities by using repetitive extragenic palendromic polymerase chain reaction (rep-PCR) and pulsed field gel electrophoresis. The results indicate that sharing of a common Burkholderia multivorans strain occurs relatively infrequently; however, several small clusters of patients infected with the same strain were identified. A cluster of seven patients infected with the same B. cepacia (genomovar I) strain was found. We also identified a large group of 28 patients receiving care in the same treatment center and infected with the same Burkholderia dolosa strain. These observations suggest that B. cepacia complex strains in species other than B. cenocepacia may be spread among CF patients.


Systematic and Applied Microbiology | 2013

Burkholderia pseudomultivorans sp. nov., a novel Burkholderia cepacia complex species from human respiratory samples and the rhizosphere.

Charlotte Peeters; James E. A. Zlosnik; Theodore Spilker; Trevor J. Hird; John J. LiPuma; Peter Vandamme

Eleven Burkholderia cepacia-like isolates of human clinical and environmental origin were examined by a polyphasic approach including recA and 16S rRNA sequence analysis, multilocus sequence analysis (MLSA), DNA base content determination, fatty acid methyl ester analysis, and biochemical characterization. The results of this study demonstrate that these isolates represent a novel species within the B. cepacia complex (Bcc) for which we propose the name Burkholderia pseudomultivorans. The type strain is strain LMG 26883(T) (=CCUG 62895(T)). B. pseudomultivorans can be differentiated from other Bcc species by recA gene sequence analysis, MLSA, and several biochemical tests including growth at 42°C, acidification of sucrose and adonitol, lysine decarboxylase and β-galactosidase activity, and esculin hydrolysis.


Journal of Clinical Microbiology | 2009

Expanded Multilocus Sequence Typing for Burkholderia Species

Theodore Spilker; Adam Baldwin; Amy Bumford; Christopher G. Dowson; Eshwar Mahenthiralingam; John J. LiPuma

ABSTRACT PCR primers targeting loci in the current Burkholderia cepacia complex multilocus sequence typing scheme were redesigned to (i) more reliably amplify these loci from B. cepacia complex species, (ii) amplify these same loci from additional Burkholderia species, and (iii) enable the use of a single primer set per locus for both amplification and DNA sequencing.


International Journal of Systematic and Evolutionary Microbiology | 2015

Burkholderia stagnalis sp nov and Burkholderia territorii sp nov., two novel Burkholderia cepacia complex species from environmental and human sources

Birgit De Smet; Mark Mayo; Charlotte Peeters; James E. A. Zlosnik; Theodore Spilker; Trevor J. Hird; John J. LiPuma; Timothy J. Kidd; Mirjam Kaestli; Jennifer L. Ginther; David M. Wagner; Paul Keim; Scott C. Bell; Jan Jacobs; Bart J. Currie; Peter Vandamme

Nine Burkholderia cepacia complex (Bcc) bacteria were isolated during environmental surveys for the ecological niche of Burkholderia pseudomallei, the aetiological agent of melioidosis, in the Northern Territory of Australia. They represented two multi-locus sequence analysis-based clusters, referred to as Bcc B and Bcc L. Three additional environmental and clinical Bcc B isolates were identified upon deposition of the sequences in the PubMLST database. Analysis of the concatenated nucleotide sequence divergence levels within both groups (1.4 and 1.9%, respectively) and towards established Bcc species (4.0 and 3.9%, respectively) demonstrated that the two taxa represented novel Bcc species. All 12 isolates were further characterized using 16S rRNA and recA gene sequence analysis, RAPD analysis, DNA base content determination, fatty acid methyl ester analysis and biochemical profiling. Analysis of recA gene sequences revealed a remarkable diversity within each of these taxa, but, together, the results supported the affiliation of the two taxa to the Bcc. Bcc B strains can be differentiated from most other Bcc members by the assimilation of maltose. Bcc L strains can be differentiated from other Bcc members by the absence of assimilation of N-acetylglucosamine. The names Burkholderia stagnalis sp. nov. with type strain LMG 28156(T) ( = CCUG 65686(T)) and Burkholderia territorii sp. nov. with type strain LMG 28158(T) ( = CCUG 65687(T)) are proposed for Bcc B and Bcc L bacteria, respectively.

Collaboration


Dive into the Theodore Spilker's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lixia Liu

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge