Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Theodoros Ntaflos is active.

Publication


Featured researches published by Theodoros Ntaflos.


Mineralogy and Petrology | 1993

Petrology and geochemistry of peridotites and associated vein rocks of Zabargad Island, Red Sea, Egypt

G. Kurat; H. Palme; Antal Embey-Isztin; Jacques L. R. Touret; Theodoros Ntaflos; Bernhard Spettel; F. Brandstätten; C. Palme; G. Dreibus; Martin Prinz

SummaryZabargad (St. Johns) Island in the Red Sea contains three ultramafic bodies, one of which bas produced the famous gem olivine (peridot). The ultramafic rock types consist of two major groups—the peridotites and the vein rocks within them. The peridotites are divided into three groups: primitive, depleted and metasomatized. The primitive peridotites are the most abundant and are represented by mainly pristine spinellherzolites which have chemical compositions representative of the subcontinental upper mantle. The depleted peridotites are mainly harzburgites and nome dunites and both are similar to worldwide occurrences. The most depleted peridotites also appear to have the greatest metasomatic additions of incompatible elements, as has been noted at other localities. Metasomatic additions were clearly accompanied by tectonic shearing. Metasomatism included infiltration of incompatible elements and the formation of porphyroblasts of clinopyroxene, amphibole, Al-spinel and plagioclase; il took place under a variety of p-T conditions and with fluids of differing compositions.The vein rocks are mainly monomineralic and comprise olivinites, orthopyroxenites, clinopyroxenites, websterites, hornblendites and plagioclasites. These rocks are believed to have formed from fluids similar to that which metasomatized the host rock, rather than by some kind of igneous process. The fluids were derived from peridotite reservoirs (fertile and depleted) and apparently were in equilibrium with these reservoirs. Highly abundant fluid inclusions document the hypersaline and CO2-dominated character of these fluids. Monomineralic vein rocks are closely associated with metasomatic and tectonic processes, and there is a complete transition between metasomatic impregnation and formation of vein rocks. These processes may have also been active in other peridotite bodies of the world, as was earlier recognized and documented in the Seiad Ultramafic Complex, California. Metasomatism is evident along clinopyroxenite and hornblendite veins, whereas orthopyroxenites, olivinites and plagioclasites do not show any interaction with the wall rocks. Olivinites are probably the latest (lowest p-T) vein rock type, and the latest olivine which formed within their open cavities became the gem peridot.Zabargad ultramafic rocks preserve relic phases indicating an initial depth of origin greater than 85 km. Clinopyroxenites preserve the memories of the highest p-T conditions and they may be the first vein rock type formed in the peridotites. The p-T path of uplift coincides with the oceanic geotherm at great depth but deviates systematically from it with falling pressure in a series of tectonic stages accompanied by metasomatism and recrystallization. The p-T and petrologic history indicates rapid uplift, a feature which is supported by extensive contact metamorphism of the associated metasediments.ZusammenfassungAuf der Insel Zabargad (St.Johns Island) im Roten Meer befinden sich drei Peridotit-Körper von denen einer seit Jahrtausenden den berühmten Peridot (Edelolivin) geliefert hat. Die ultramafischen Gesteine von Zabargad gliedern sich in zwei Hauptgruppen: die Peridotite und die mit diesen vergesellschafteten Ganggesteine. Die Peridotite können in drei Gruppen gegliedert werden: die primitiven, die verarmten und die metasomatisch veränderten Peridotite. Am meisten verbreitet auf Zabargad sind die primitiven Peridotite. Diese sind meist Spinell-Lherzolithe mit einer chemischen Zusammensetzung, welche dem subkontinentalen Oberen Erdmantel entspricht. Die verarmten Peridotite werden hauptsächlich von Harzburgiten und einigen wenigen Duniten repräsentiert. Beide sind jenen aus anderen Vorkommen der Welt sehr ähnlich. Die am stärksten verarmten Peridotite scheinen auch die stärksten metasomatischen Veränderungen erfahren zu haben—ein Trend, der auch schon an anderen ultramafischen Komplexen erkannt wurde. Metasomatische Anreicherungen inkompatibler Spurenelemente sind häufig direkt mit tektonischer Verformung und Kataklase gekoppelt. Die Metasomatose ist als Infiltration inkompatibler Elemente erkennbar und führte auch zur Bildung von Porphyroblasten von Klinopyroxen, Amphibol, Al-Spinell und Plagioklas. Diese Bildungen fanden unter verschiedenen p-T-Bedingungen statt und erfolgten durch Fluide mit unterschiedlichen Zusammensetzungen.Die (meist ultramafischen) Ganggesteine sind häufig monomineralisch und umfassen Olivinite, Orthopyroxenite, Klinopyroxenite, Websterite, Hornblendite und Plagioklasite. Wir glauben, daß diese Gesteine von Fluiden gebildet wurden, welche ähnlich jenen waren, die die Metasomatosen der Peridotite verursachten. Diese Genese wird von uns der magmatischen vorgezogen. Die Fluide stammten aus peridotitischen Reservoiren (fertilen und verarmten) und waren mit diesen offenbar im Gleichgewicht. Die Ganggesteine sind sehr reich an “fluid inclusions”, welche allerdings keine Flüssigkeit enthalten, sondern nur Festkörper (Salze) und CO2 (± N2), also einen trockenen, hypersalinen Charakter haben. Auch die monomineralischen Ganggesteine sind eng mit tektonischen Prozessen verknüpft und somit auch mit metasomatischen Prozessen. Es existieren vollkommene Übergänge von metasomatischen Imprägnationen bis zu echten Ganggesteinen. Solche Prozesse waren offensichtlich auch weltweit in anderen ultramafschen Komplexen aktiv und wurden schon im Seiad Ultramafc Complex in Kalifornien erkannt und beschrieben. Metasomatismus begleitet überlicherweise die Klinopyroxenit- und Hornblendit-Gänge. Orthopyroxenite, Olivinite und auch Plagioklasite zeigen jedoch keine Wechselwirkung mit den Wirtgesteinen. Olivinite sind wahrscheinlich die zuletzt gebildeten Ganggesteine. Der zuletzt sich bildende Olivin wurde der schönste und zum gesuchten Peridot.Alle ultramafschen Gesteine von Zabargad enthalten Minerale aus verschiedenen Bildungsepochen. Einige Relikte erinnern an eine Herkunft aus einer Tiefe von mehr als 85 km. Klinopyroxenite konservierten die höchsten p-T-Bedingungen. Sie waren daher wahrscheinlich die ersten (noch erhaltenen) Ganggesteine, welche sich im peridotitischen Erdmantel unterhalb des heutigen Roten Meeres bildeten. Der p-T-Pfad der Zabargad Ultramafitite deckt sich in großer Tiefe mit der ozeanischen Geotherme. Mit abnehmender Tiefe entfernt sich dieser Pfad allerdings zunehmend von der Geotherme und läßt eine Reihe von tektonischen Aktivitäten verbunden mit Metasomatose und Rekristallisation erkennen. Die p-T-Geschichte der Zabargad Ultramaftite deuten auf einen raschen Aufstieg aus dem Erdmantel hin. Diese Daten werden durch die weitverbreitete und intensive Kontaktmetamorphose der mit den Peridotiten assoziierten Metasedimenten unterstützt.


European Journal of Mineralogy | 2008

Tetrahedrally coordinated boron in Al-rich tourmaline and its relationship to the pressure–temperature conditions of formation

Andreas Ertl; Ekkehart Tillmanns; Theodoros Ntaflos; Carl A. Francis; Gerald Giester; Wilfried Körner; John M. Hughes; Christian L. Lengauer; Markus Prem

An Al-rich tourmaline from the Sahatany Pegmatite Field at Manjaka, Sahatany Valley, Madagascar, was structurally and chemically characterized. The combination of chemical and structural data yields an optimized formula of X (Na0.53Ca0.09□0.38) Y (Al2.00Li0.90Mn2+0.09Fe2+ 0.01) Z Al6 (BO3)3 T [Si5.61B0.39]O18 V (OH)3 W [(OH)0.6O0.4], with a = 15.777(1), c = 7.086(1) A ( R 1 = 0.017 for 3241 reflections). The 〈 T –O〉 distance of ~ 1.611 A is one of the smallest distances observed in natural tourmalines. The very short 〈 Y –O〉 distance of ~ 1.976 A reflects the relatively high amount of Al at the Y site. Together with other natural and synthetic Al-rich tourmalines, a very good inverse correlation ( r 2 = 0.996) between [4]B and the unit-cell volume was found. [4]B increases with the Al content at the Y site approximately as a power function with a linear term up until [4]B ≈ Si ≈ 3 apfu and Y Al ≈ 3 apfu, respectively, in natural and synthetic Al-rich tourmalines. Short-range order considerations would not allow for [4]B in solid solution between schorl and elbaite, but would in solid solutions between schorl, “oxy-schorl”, elbaite, liddicoatite, or rossmanite and hypothetical [4]B-rich tourmaline end-members with only Al3+ at the Y site. By plotting the [4]B content of synthetic and natural Al-rich tourmalines, which crystallized at elevated PT conditions, it is obvious that there are pronounced correlations between PT conditions and the [4]B content. Towards lower temperatures higher [4]B contents are found in tourmaline, which is consistent with previous investigations on the coordination of B in melts. Above a pressure of ~ 1000–1500 MPa (depending on the temperature) the highest observed [4]B content does not change significantly at a given temperature. The PT conditions of the formation of [4]B-rich olenite from Koralpe, Eastern Alps, Austria, can be estimated as 500–700 MPa/630 °C.


American Mineralogist | 2010

Metamorphic ultrahigh-pressure tourmaline: Structure, chemistry, and correlations to P-T conditions

Andreas Ertl; Horst R. Marschall; Gerald Giester; Darrell J. Henry; Hans-Peter Schertl; Theodoros Ntaflos; George Luiz Luvizotto; Lutz Nasdala; Ekkehart Tillmanns

Abstract Tourmaline grains extracted from rocks within three ultrahigh-pressure (UHP) metamorphic localities have been subjected to a structurally and chemically detailed analysis to test for any systematic behavior related to temperature and pressure. Dravite from Parigi, Dora Maira, Western Alps (peak P-T conditions ~3.7 GPa, 750 °C), has a structural formula of X(Na0.90Ca0.05K0.01⃞0.04) Y(Mg1.78Al0.99Fe2+0.12Ti4+0.03⃞0.08)Z(Al5.10Mg0.90)(BO3)3TSi6.00O18V(OH)3W[(OH)0.72F0.28]. Dravite from Lago di Cignana, Western Alps, Italy (~2.7-2.9 GPa, 600-630 °C), has a formula of X(Na0.84Ca0.09K0.01⃞0.06)Y(Mg1.64Al0.79Fe2+0.48Mn2+0.06Ti4+0.02Ni0.02Zn0.01)Z(Al5.00Mg1.00)(BO3)3T(Si5.98Al0.02)O18V(OH)3W[(OH)0.65F0.35]. “Oxy-schorl” from the Saxonian Erzgebirge, Germany (≥4.5 GPa, 1000 °C), most likely formed during exhumation at >2.9 GPa, 870 °C, has a formula of X(Na0.86Ca0.02K0.02⃞0.10)Y(Al1.63Fe2+1.23Ti4+0.11Mg0.03Zn0.01) Z(Al5.05Mg0.95)(BO3)3T(Si5.96Al0.04)O18V(OH)3W[O0.81F0.10(OH)0.09]. There is no structural evidence for significant substitution of [4]Si by [4]Al or [4]B in the UHP tourmaline ( distances ~1.620 Å), even in high-temperature tourmaline from the Erzgebirge. This is in contrast to high-T-low-P tourmaline, which typically has significant amounts of [4]Al. There is an excellent positive correlation (r2 = 1.00) between total [6]Al (i.e., YAl + ZAl) and the determined temperature conditions of tourmaline formation from the different localities. Additionally, there is a negative correlation (r2 = 0.97) between F content and the temperature conditions of UHP tourmaline formation and between F and YAl content (r2 = 1.00) that is best explained by the exchange vector YAlO(R2+F)-1. This is consistent with the W site (occupied either by F, O, or OH), being part of the YO6-polyhedron. Hence, the observed Al-Mg disorder between the Y and Z sites is possibly indirectly dependent on the crystallization temperature.


Mineralogy and Petrology | 1995

Glass-bearing xenoliths from Cape Verde: Evidence for a hot rising mantle jet

J. D. Ryabchikov; Theodoros Ntaflos; G. Kurat; L. N. Kogarko

SummaryPeridotitic xenoliths from melanephelinites of Sal Island, Cape Verde Archipelago, have a compositional range from moderately depleted Iherzolites to refractory harzburgites. Most xenoliths have protogranular textures but porphyroclastic and mylonitic textures are not uncommon. Small amounts of glass are present in the intergranular space of these rocks which possibly, at least in part, represent quenched silicate melt which invaded these rocks just before they were excavated. These glasses contain microphenocrysts of olivine, clinopyroxene, and spinel, as well as small grains of sulphides and metallic Fe-Ni alloys. Metallic phases were most likely produced by the desulphurization of sulfides, which also resulted in very low oxygen fugacities (several logarithmic units below QFM buffer) in the interstitial glasses and associated microphenocrysts. This is reflected in the chemical composition of the newly formed spinels which are characterised by low amounts of ferric iron. In contrast, primary spinel-bearing mineral assemblages of the peridotites were formed at much higher fO2. which were similar to those estimated for the host nephelinites which have high titanomagnetite contents.ZusammenfassungDie ultramafischen Xenolithe aus den Melanepheliniten von der Kap Verde Insel Sal sind Spinell-Lherzolithe und Spinell-Harzburgite. Am verbreitesten sind Xenolithe mit protogranularer Textur, aber auch Xenolithe mit porphyroklastischer und mylonitischer Textur treten häufig auf. Die Xenolithe enthalten kleine Mengen von intergranularem Glas, welches, wenigstens zum Teil, abgeschreckte silikatische Schmelzen repräsentiert, welche die Gesteine vor ihrem Aufstieg aus dem Erdmantel durchdrungen haben. Dieses Glas enthält Mikrophenokristalle von Olivin, Klinopyroxen und Orthopyroxen, sowie auch kleinere Körner von Sulfiden und metallischen Fe-Ni Legierungen. Metallische Phasen sind sehr wahrscheinlich durch Entschwefelung von Sulfiden unter sehr niedrigem fO2 (einige Größenordnungen unter dem QFM Buffer) entstanden. Das wirkt sich auf die Zusammensetzung der neu gebildeten Spinelle aus, die durch einen niederen Gehalt an Fe3+ charakterisiert sind. Die Xenolithe wurden jedoch unter viel höhere fO2 gebildet. Ihre foe sind ähnlich der für die Wirtsnephelinite berechneten fO2, die hohe Titanomagnetit-Gehalte aufweisen.


Petrology | 2009

Phosphorus-bearing sulfides and their associations in CM chondrites

M. A. Nazarov; G. Kurat; F. Brandstaetter; Theodoros Ntaflos; M. Chaussidon; Peter Hoppe

Phosphorus-bearing Fe and Ni sulfides represent a new type of phosphorus compounds and are characteristic accessory phases of CM chondrites. The proportions of atoms in the sulfides can be approximated by the equation (Fe + Ni)/P = 0.965 ± 0.003 (1σ) · S/P + 1.255 ± 0.036 (1σ). Sulfides with high S/P ratios are systematically richer in Fe and poorer in Ni compared with low-S/P sulfides. Their characteristic minor elements are Cr, Ca, Co, K, and Na. The contents of Cr and Ca may reach several weight percent, but their incorporation does not affect the relation between (Fe + Ni)/P and S/P. This is also true of light elements (O and H), which probably occur in the P-bearing sulfides in certain amounts. The sulfides are usually associated with schreibersite, barringerite, eskolaite, and daubreelite. A negative correlation was observed between the Fe/Ni ratios of coexisting P-bearing sulfides and phosphides. Metallic iron was never found in association with the sulfides. It can be suggested that P-bearing sulfide is a primary phase rather than a secondary alteration product formed under the conditions of the CM chondrite parent body. This phase had to be stable in the solar nebula after the formation of Ca-Al inclusions and before the condensation of Fe-Ni metal. At high temperatures, P-bearing sulfide with low Fe/Ni and S/P ratios coexists with schreibersite in the solar gas. During condensation schreibersite is replaced by barringerite, which is accompanied by a decrease in the Fe/Ni ratio of phosphides and an increase in the S/P and Fe/Ni ratios of P-bearing sulfides. Trace element data suggest that the P-bearing sulfides could be formed in the solar nebula by the sulfidization of a precursor phase of extrasolar origin.


Geological Society, London, Special Publications | 2008

The Gataia Pleistocene lamproite: a new occurrence at the southeastern edge of the Pannonian Basin, Romania

Ioan Seghedi; Theodoros Ntaflos; Zoltán Pécskay

Abstract The petrological identity of the lamproite occurrence situated c. 5 km south of Gătaia (Banat, western Romania), until now considered to be an alkali basalt, has been revealed by exploration drilling. This drilling programme pierced a slightly vesicular lava flow inside the Şumiga hill (198 m above sea level), revealing a sequence of vesicular lava intercalated with fallout scoria deposits. The isolated lamproite volcano, dated at 1.32±0.06 Ma (whole-rock K/Ar method), is situated at the southeastern margin of the Pannonian Basin and at the western margin of the South Carpathians, along an important NE–SW fault system. The lamproite magma erupted through flat-lying Miocene sedimentary rocks, which overlie older crystalline basement that experienced intense lithospheric deformation and orogeny during Cretaceous times. The lamproite is associated with contemporaneous volcanic activity that lies 50–150 km to the NNE, along the South Transylvanian fault system (Lucareţ alkali basalts, Uroiu shoshonites); these rocks, however, are not consanguineous, and derive from different mantle sources. There are, however, similarities to Oligocene lamproites from Serbia (Bogovina), generated on similar basement. The lamproite is fresh and has a slightly porphyritic texture with phenocrysts of high-Mg olivine and microphenocrysts of euhedral leucite in a glassy matrix. The matrix also contains microcrysts of olivine, armalcolite, apatite, sanidine, low Al-diopside, fluorine-bearing titanium phlogopite, fluorine-bearing amphibole and accessory chrome spinels. Ba-sulphate aggregates fill small vesicles. Very rare clots of corroded Al-phlogopite surrounded by secondary spinels are enclosed by leucite aggregates, suggesting formation during an earlier event. Major and trace element geochemistry and Sr and Nd isotopes show that the rock is a typical lamproite, close to the compositions of Leucite Hills and Gaussberg lamproites. The source for the Gătaia lamproite was probably a garnet harzburgite lithospheric mantle, metasomatized by alkaline mafic melts, most probably active at the Cretaceous–Palaeogene boundary. Metasomatism by alkaline melts is indicated by high abundances of incompatible trace elements, such as Ba, Sr, Rb and Zr. The Gătaia lamproite probably had a limited available source volume for melting that reflects the ambient thermal regime in the typical post-collisional tectonic setting active during Late Neogene to Quaternary time. Emplacement of this lamproite was probably a result of surface uplift and erosion at the base of the lithosphere, marking the collapse of the Alpine orogen.


Geology | 2015

Mesoproterozoic and Paleoproterozoic subcontinental lithospheric mantle domains beneath southern Patagonia: Isotopic evidence for its connection to Africa and Antarctica

Andrea Mundl; Theodoros Ntaflos; Lukáš Ackerman; Michael Bizimis; Ernesto Bjerg; Christoph Hauzenberger

New isotopic studies on mantle xenoliths from Santa Cruz Province, southern Patagonia, Argentina, reveal that at least three discrete subcontinental lithospheric mantle (SCLM) domains—the Deseado Massif, Tres Lagos, and Pali Aike—form the southernmost part of South America. Re-Os systematics yield early Paleoproterozoic (up to 2.5 Ga) SCLM formation ages (rhenium depletion ages, T RD ) for Pali Aike spinel peridotites, while samples from the Deseado Massif and Tres Lagos indicate a younger SCLM origin with Neoproterozoic to Mesoproterozoic (0.9–1.3 Ga) and Mesoproterozoic to late Paleoproterozoic (1.3–1.9 Ga) T RD ages, respectively. Hf-Sr-Nd isotopic compositions indicate metasomatic overprinting of the majority of the samples, which, however, has not affected the Os isotopic system. Based on similar formation ages, the geological evolution of the Deseado Massif is most likely connected to the evolution of the Namaqua-Natal belt of South Africa. T RD ages from SCLM domains underneath Tres Lagos and Pali Aike indicate a common origin with crustal sections from Shackleton Range, Antarctica, positioning the southern tip of South America closer to west Antarctica in the reconstructed Rodinia supercontinent than previously assumed.


Archive | 2013

Deep-Seated Xenoliths from the Brown Breccia of the Udachnaya Pipe, Siberia

I. V. Ashchepkov; Theodoros Ntaflos; S. S. Kuligin; E. V. Malygina; A. M. Agashev; A. M. Logvinova; S. I. Mityukhin; N. V. Alymova; N. V. Vladykin; S. V. Palessky; O. S. Khmelnikova

A detailed study in thin section of a set of 330 fresh small xenoliths from the brown breccia within a deep level of the Udachnaya kimberlite pipe allowed us reconstruction of the mantle section from 8.0 to 1.0 GPa, which represents 6 main capturing intervals. Interaction of the protokimberlite melt with the deeper level was responsible for peridotite heating, shearing, metasomatism, and remelting of eclogites. The most compositionally and thermally diverse mantle horizon is detected from 7.0 to 5.0 GPa. The pyroxenite-rich levels are found in the lithosphere base, near 4.0 GPa and in the upper part at 30–2.0 GPa.


Journal of Earth System Science | 2012

Mineral chemistry of lava flows from Linga area of the Eastern Deccan Volcanic Province, India

Sohini Ganguly; Jyotisankar Ray; Christian Koeberl; Theodoros Ntaflos; Mousumi Banerjee

Several basaltic lava flows have been identified in the study area in and around Linga, in the Eastern Deccan Volcanic Province (EDVP) on the basis of distinctly developed structural zones defined by primary volcanic structures such as columnar joints and vesicles. These basaltic lava flows are spatially distributed in four different sectors, viz., (i) Bargona–Gadarwara (BG) sector (ii) Shikarpur–Linga (SL) sector (iii) Arjunvari–Survir Hill (AS) sector and (iv) Kukrachiman–Morand Hill (KM) sector. A three-tier classification scheme has been adopted for the characterization and classification of individual lava flows. Each lava flow consists of a Lower Colonnade Zone (LCZ) overlain by the Entablature Zone (EZ) and Upper Colonnade Zone (UCZ). The LCZ and UCZ grade into a distinct/indistinct Lower Vesicular Zone (LVZ) and Upper Vesicular Zone (UVZ), respectively. The LCZ and UCZ of the flows are characterized by columnar joints while the EZ is marked by multi-directional hackly jointing. The geometry of different joint patterns corresponds to different styles of cooling during solidification of lava flows. Detailed petrographic studies of the investigated lava flows reveal inequigranular phenocrystal basalts characterized by development of phenocrystal phases including plagioclase, clinopyroxene and olivine, whereas groundmass composition is marked by tiny plagioclase, clinopyroxene, opaque mineral and glass. Electron microprobe analyses indicate that the olivine has a wide range ∼Fo22 to Fo66 revealing a wide spectrum of compositional variation. Pyroxene compositions are distinctly designated as Quad pyroxenes. Phenocrystal pyroxenes are mostly diopsidic, while the groundmass pyroxenes mainly correspond to augite with a minor pigeonite component. Pyroxene phenocrysts are characterized by a prominent Ti-enrichment. Phenocrystal plagioclase grains are calcic (An52.7–An72.9), whereas groundmass plagioclase are relatively sodic (An39.2–An61.6). Groundmass opaque minerals are characteristically found to be Ti–magnetite/ilmenite/pyrophanite. Pyroxene thermometry reveals a temperature span of 850°C to 1280°C for the studied lavas while olivine–clinopyroxene thermometry yields a temperature range from 1040°–1160°C. The variation of temperature for the lava flows is ascribed to their normal cooling history after eruption.


Petrology | 2011

Aluminous enstatites of lunar meteorites and deep-seated lunar rocks

M. A. Nazarov; L. Ya. Aranovich; S. I. Demidova; Theodoros Ntaflos; Franz Brandstatter

Fragments of aluminous enstatite from lunar meteorites of highland origin were investigated. It was found that such fragments usually occur in impact breccias of troctolitic composition. The aluminous enstatite contains up to 12 wt % Al2O3 and shows low CaO (<1 wt %) and almost constant high Mg/(Mg + Fe) ratio (89.5 ± 1.4 at %) identical to that of the Earth’s mantle. With respect to these parameters, the aluminous enstatites are distinctly different from common orthopyroxene of lunar rocks. The aluminous enstatite associates with spinel (pleonaste), olivine, anorthite (clinopyroxene was never found), and accessory minerals: rutile, Ti-Zr oxides, troilite, and Fe-Ni metal. The same assemblage was described in rare fragments of spinel cataclasites from the samples of the Apollo missions. Thermobarometry and the analysis of phase equilibria showed that the rocks hosting aluminous enstatite are of deep origin and occurred at depths from 25 km to 130–200 km at T from 800 to 1300°C, i.e., at least in the lower crust and, possibly, in the upper mantle of the Moon. These rocks could form individual plutons or dominate the composition of the lower crust. The most probable source of aluminous enstatite is troctolitic magnesian rocks and, especially, spinel troctolites with low Ca/Al and Ca/Si ratios. The decompression of such rocks must produce cordierite-bearing assemblages. The almost complete absence of such assemblages in the surficial rocks of lunar highlands implies that vertical tectonic movements were practically absent in the lunar crust. The transport of deep-seated materials to the lunar surface was probably related to impact events during the intense meteorite bombardments >3.9 Ga ago.

Collaboration


Dive into the Theodoros Ntaflos's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Szabolcs Harangi

Eötvös Loránd University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ernesto Bjerg

Universidad Nacional del Sur

View shared research outputs
Top Co-Authors

Avatar

G. Kurat

University of Vienna

View shared research outputs
Researchain Logo
Decentralizing Knowledge