Theresa A. Freeman
Thomas Jefferson University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Theresa A. Freeman.
Journal of Clinical Investigation | 1998
R. Bals; Xiaorong Wang; Zhongren Wu; Theresa A. Freeman; V. Bafna; M. Zasloff; J. M. Wilson
Previous studies have implicated the novel peptide antibiotic human beta-defensin 1 (hBD-1) in the pathogenesis of cystic fibrosis. We describe in this report the isolation and characterization of the second member of this defensin family, human beta-defensin 2 (hBD-2). A cDNA for hBD-2 was identified by homology to hBD-1. hBD-2 is expressed diffusely throughout epithelia of many organs, including the lung, where it is found in the surface epithelia and serous cells of the submucosal glands. A specific antibody made of recombinant peptide detected hBD-2 in airway surface fluid of human lung. The fully processed peptide has broad antibacterial activity against many organisms, which is salt sensitive and synergistic with lysozyme and lactoferrin. These data suggest the existence of a family of beta-defensin molecules on mucosal surfaces that in the aggregate contributes to normal host defense.
Biomaterials | 2008
Valentin Antoci; Christopher S. Adams; Javad Parvizi; Helen M. Davidson; Russell J. Composto; Theresa A. Freeman; Eric Wickstrom; Paul Ducheyne; Donald Jungkind; Irving M. Shapiro; Noreen J. Hickok
Peri-prosthetic infections are notoriously difficult to treat as the biomaterial implant is ideal for bacterial adhesion and biofilm formation, resulting in decreased antibiotic sensitivity. Previously, we reported that vancomycin covalently attached to a Ti alloy surface (Vanc-Ti) could prevent bacterial colonization. Herein we examine the effect of this Vanc-Ti surface on Staphylococci epidermidis, a Gram-positive organism prevalent in orthopaedic infections. By direct colony counting and fluorescent visualization of live bacteria, S. epidermidis colonization was significantly inhibited on Vanc-Ti implants. In contrast, the gram-negative organism Escherichia coli readily colonized the Vanc-Ti rod, suggesting retention of antibiotic specificity. By histochemical and SEM analysis, Vanc-Ti prevented S. epidermidis biofilm formation, even in the presence of serum. Furthermore, when challenged multiple times with S. epidermidis, Vanc-Ti rods resisted bacterial colonization. Finally, when S. epidermidis was continuously cultured in the presence of Vanc-Ti, the bacteria maintained a Vanc sensitivity equivalent to the parent strain. These findings indicate that antibiotic derivatization of implants can result in a surface that can resist bacterial colonization. This technology holds great promise for the prevention and treatment of periprosthetic infections.
Science | 1995
Robert G. Nagele; Theresa A. Freeman; Lydia McMorrow; Hsin-Yi Lee
The relative locations of several chromosomes within wheel-shaped prometaphase chromosome rosettes of human fibroblasts and HeLa cells were determined with fluorescence hybridization. Homologs were consistently positioned on opposite sides of the rosette, which suggests that chromosomes are separated into two haploid sets, each derived from one parent. The relative locations of chromosomes on the rosette were mapped by dual hybridizations. The data suggest that the chromosome orders within the two haploid sets are antiparallel. This chromosome arrangement in human cells appears to be both independent of cell type- and species-specific and may influence chromosome topology throughout the cell cycle.
Arthritis & Rheumatism | 2009
Jolene Bohensky; Shawn P. Terkhorn; Theresa A. Freeman; Christopher S. Adams; Joseph A. Garcia; Irving M. Shapiro; Vickram Srinivas
OBJECTIVE We have previously demonstrated that the transcription factor hypoxia-inducible factor 1 (HIF-1) promotes the onset of autophagy in chondrocytes. The overall goal of this study was to test the hypothesis that another HIF family transcription factor, HIF-2, modulates the induction of autophagy by chondrocytes. METHODS Expression of HIF-1, HIF-2, and light chain 3 (LC3) in human and murine articular cartilage was visualized by immunohistochemistry. Suppression of HIF-2 was achieved using small interfering RNA technology. Assessments of autophagic flux and lysosomal activity, as well as ultrastructural analysis, were performed in chondrocytes in cell culture. RESULTS HIF-2 was expressed abundantly by cells in human and murine articular cartilage and in the cartilage of mineralizing vertebrae from neonatal mice. Protein levels were reduced in articular cartilage from older mice, in end-plate cartilage from mice, and in chondrocytes from human osteoarthritic (OA) cartilage. HIF-2 was robustly expressed in the prehypertrophic cells of mouse growth cartilage. When HIF-2alpha was silenced, the generation of reactive oxygen species was found to be elevated, with a concomitant decrease in catalase and superoxide dismutase activity. Suppression of HIF-2 was associated with decreased Akt-1 and mammalian target of rapamycin activities, reduced Bcl-xL expression, and a robust autophagic response, even under nutrient-replete conditions. In these silenced chondrocytes, HIF-1 expression was elevated. Decreased HIF-2 expression was associated with autophagy in OA tissues and aging cartilage samples. The autophagic response of chondrocytes in HIF-2alpha-knockout mouse growth plate showed an elevated autophagic response throughout the plate. CONCLUSION Based on these observations, we conclude that HIF-2 is a potent regulator of autophagy in maturing chondrocytes. Our data suggest that this protein acts as a brake on the autophagy-accelerator function of HIF-1.
Journal of Clinical Investigation | 2013
Jibin Zhou; Theresa A. Freeman; Firdos Ahmad; Xiying Shang; Emily Mangano; Erhe Gao; John L. Farber; Yajing Wang; Xin-Liang Ma; James R. Woodgett; Ronald J. Vagnozzi; Hind Lal; Thomas Force
Aging is regulated by conserved signaling pathways. The glycogen synthase kinase-3 (GSK-3) family of serine/threonine kinases regulates several of these pathways, but the role of GSK-3 in aging is unknown. Herein, we demonstrate premature death and acceleration of age-related pathologies in the Gsk3a global KO mouse. KO mice developed cardiac hypertrophy and contractile dysfunction as well as sarcomere disruption and striking sarcopenia in cardiac and skeletal muscle, a classical finding in aging. We also observed severe vacuolar degeneration of myofibers and large tubular aggregates in skeletal muscle, consistent with impaired clearance of insoluble cellular debris. Other organ systems, including gut, liver, and the skeletal system, also demonstrated age-related pathologies. Mechanistically, we found marked activation of mTORC1 and associated suppression of autophagy markers in KO mice. Loss of GSK-3α, either by pharmacologic inhibition or Gsk3a gene deletion, suppressed autophagy in fibroblasts. mTOR inhibition rescued this effect and reversed the established pathologies in the striated muscle of the KO mouse. Thus, GSK-3α is a critical regulator of mTORC1, autophagy, and aging. In its absence, aging/senescence is accelerated in multiple tissues. Strategies to maintain GSK-3α activity and/or inhibit mTOR in the elderly could retard the appearance of age-related pathologies.
Journal of Cellular Physiology | 2006
K. H. Szymczyk; Theresa A. Freeman; Christopher S. Adams; Vickram Srinivas; Marla J. Steinbeck
Based on our earlier observation that caspase‐3 is present in osteoclasts that are not undergoing apoptosis, we investigated the role of this protein in the differentiation of primary osteoclasts and RAW264.7 cells (Szymczyk KH, et al., 2005, Caspase‐3 activity is necessary for RANKL‐induced osteoclast differentiation. The Proceedings of the 8th ICCBMT). We noted that osteoclast numbers are decreased in long bones of procaspase‐3 knockout mice and that receptor activator of NF‐κB ligand (RANKL) does not promote differentiation of isolated preosteoclasts. In addition, after treatment with inhibitors of caspase‐3 activity, neither the wild‐type primary nor the RAW264.7 cells express TRAP or became multinucleated. We found that immediately following RANKL treatment, procaspase‐3 is cleaved and the activated protein is localized to lipid regions of the plasma membrane and the cytosol. We developed RAW264.7 procaspase‐3 knockdown clonal cell lines using RNAi technology. Again, treatment with RANKL fails to induce TRAP activity or multinucleation. Finally, we evaluated NF‐κB in procaspase‐3 silenced cells. We found that RANKL treatment prevented activation and nuclear translocation of NF‐κB. Together these findings provide direct support for the hypothesis that caspase‐3 activity is required for osteoclast differentiation. J. Cell. Physiol. 209: 836–844, 2006.
Journal of Alzheimer's Disease | 2013
Nimish K. Acharya; Eli C. Levin; Peter M. Clifford; Min Han; Ryan Tourtellotte; Dean Chamberlain; Michael Pollaro; Nicholas J. Coretti; Mary C. Kosciuk; Eric P. Nagele; Cassandra DeMarshall; Theresa A. Freeman; Yi Shi; Chenbing Guan; Colin H. Macphee; Robert L. Wilensky; Robert G. Nagele
Diabetes mellitus (DM) and hypercholesterolemia (HC) have emerged as major risk factors for Alzheimers disease, highlighting the importance of vascular health to normal brain functioning. Our previous study showed that DM and HC favor the development of advanced coronary atherosclerosis in a porcine model, and that treatment with darapladib, an inhibitor of lipoprotein-associated phospholipase A2, blocks atherosclerosis progression and improves animal alertness and activity levels. In the present study, we examined the effects of DM and HC on the permeability of the blood-brain barrier (BBB) using immunoglobulin G (IgG) as a biomarker. DMHC increased BBB permeability and the leak of microvascular IgG into the brain interstitium, which was bound preferentially to pyramidal neurons in the cerebral cortex. We also examined the effects of DMHC on the brain deposition of amyloid peptide (Aβ42), a well-known pathological feature of Alzheimers disease. Nearly all detectable Aβ42 was contained within cortical pyramidal neurons and DMHC increased the density of Aβ42-loaded neurons. Treatment of DMHC animals with darapladib reduced the amount of IgG-immunopositive material that leaked into the brain as well as the density of Aβ42-containing neurons. Overall, these results suggest that a prolonged state of DMHC may have chronic deleterious effects on the functional integrity of the BBB and that, in this DMHC pig model, darapladib reduces BBB permeability. Also, the preferential binding of IgG and coincident accumulation of Aβ42 in the same neurons suggests a mechanistic link between the leak of IgG through the BBB and intraneuronal deposition of Aβ42 in the brain.
Journal of Orthopaedic Research | 2009
Theresa A. Freeman; Payal Patel; Javad Parvizi; Valentin Antoci; Irving M. Shapiro
Multiple threshold algorithms applied to microcomputed tomography analysis were used to probe the effects of low‐intensity pulsed ultrasound on fracture healing. Rat femurs were fractured in accordance with IACUC guidelines. Ultrasound treatment was administered daily to one femur; the contralateral bone was treated with a sham transducer. Each week for 3 weeks healing fractures were harvested and scanned by micro‐CT. Remodeling activity was confirmed by evaluation of TRAP activity. Using thresholds of 331–700 and 225–330, area of cortical bone, and new bone formation, respectively, were identified, and by inference, regions of bone resorption. The increased sensitivity of this multithresholding procedure revealed that ultrasound treatment significantly increased the rate of fracture healing in vivo by activating both new bone formation and by increasing the removal of cortical bone in a time‐ and site‐specific manner. At week 1, compared to the proximal side, there was a significant increase in new bone formation distal to the fracture site. Removal of the existing cortical bone followed the same pattern at week 2. Results of the study indicate that at sites of bone turnover, this multithresholding analytical technique can be used to provide quantitative information on bone formation, as well as resorption.
Fibrogenesis & Tissue Repair | 2010
Theresa A. Freeman; Javad Parvizi; Craig J Dela Valle; Marla J. Steinbeck
BackgroundIdiopathic arthrofibrosis occurs in 3-4% of patients who undergo total knee arthroplasty (TKA). However, little is known about the cellular or molecular changes involved in the onset or progression of this condition. To classify the histomorphologic changes and evaluate potential contributing factors, periarticular tissues from the knees of patients with arthrofibrosis were analyzed for fibroblast and mast cell proliferation, heterotopic ossification, cellular apoptosis, hypoxia and oxidative stress.ResultsThe arthrofibrotic tissue was composed of dense fibroblastic regions, with limited vascularity along the outer edges. Within the fibrotic regions, elevated numbers of chymase/fibroblast growth factor (FGF)-expressing mast cells were observed. In addition, this region contained fibrocartilage and associated heterotopic ossification, which quantitatively correlated with decreased range of motion (stiffness). Fibrotic, fibrocartilage and ossified regions contained few terminal dUTP nick end labeling (TUNEL)-positive or apoptotic cells, despite positive immunostaining for lactate dehydrogenase (LDH)5, a marker of hypoxia, and nitrotyrosine, a marker for protein nitrosylation. LDH5 and nitrotyrosine were found in the same tissue areas, indicating that hypoxic areas within the tissue were associated with increased production of reactive oxygen and nitrogen species.ConclusionsTaken together, we suggest that hypoxia-associated oxidative stress initiates mast cell proliferation and FGF secretion, spurring fibroblast proliferation and tissue fibrosis. Fibroblasts within this hypoxic environment undergo metaplastic transformation to fibrocartilage, followed by heterotopic ossification, resulting in increased joint stiffness. Thus, hypoxia and associated oxidative stress are potential therapeutic targets for fibrosis and metaplastic progression of idiopathic arthrofibrosis after TKA.
Chromosoma | 1998
Robert G. Nagele; Theresa A. Freeman; J. Fazekas; K.-M. Lee; Z. Thomson; Hsin-Yi Lee
Abstract. We have investigated the origin and nature of chromosome spatial order in human cells by analyzing and comparing chromosome distribution patterns of normal cells with cells showing specific chromosome numerical anomalies known to arise early in development. Results show that all chromosomes in normal diploid cells, triploid cells and in cells exhibiting nondisjunction trisomy 21 are incorporated into a single, radial array (rosette) throughout mitosis. Analysis of cells using fluorescence in situ hybridization, digital imaging and computer-assisted image analysis suggests that chromosomes within rosettes are segregated into tandemly linked “haploid sets” containing 23 chromosomes each. In cells exhibiting nondisjunction trisomy 21, the distribution of chromosome 21 homologs in rosettes was such that two of the three homologs were closely juxtaposed, a pattern consistent with our current understanding of the mechanism of chromosomal nondisjunction. Rosettes of cells derived from triploid individuals contained chromosomes segregated into three, tandemly linked haploid sets in which chromosome spatial order was preserved, but with chromosome positional order in one haploid set inverted with respect to the other two sets. The spatial separation of homologs in triploid cells was chromosome specific, providing evidence that chromosomes occupy preferred positions within the haploid sets. Since both triploidy and nondisjunction trisomy 21 are chromosome numerical anomalies that arise extremely early in development (e.g., during meiosis or during the first few mitoses), our results support the idea that normal and abnormal chromosome distribution patterns in mitotic human cells are established early in development, and are propagated faithfully by mitosis throughout development and into adult life. Furthermore, our observations suggest that segregation of chromosome homologs into two haploid sets in normal diploid cells is a remnant of fertilization and, in normal diploid cells, reflects segregation of maternal and paternal chromosomes.