Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Theresa A. Musket is active.

Publication


Featured researches published by Theresa A. Musket.


Plant Molecular Biology | 2002

Development and mapping of SSR markers for maize.

Natalya Sharopova; Michael D. McMullen; Linda Schultz; Steve G. Schroeder; Hector Sanchez-Villeda; Jack M. Gardiner; Dean Bergstrom; Katherine Houchins; Susan Melia-Hancock; Theresa A. Musket; Ngozi A. Duru; Mary L. Polacco; Keith J. Edwards; Thomas G. Ruff; James C. Register; Cory Brouwer; Richard D. Thompson; Riccardo Velasco; Emily Chin; Michael Lee; Wendy Woodman-Clikeman; Mary Jane Long; Emmanuel Liscum; Karen C. Cone; Georgia L. Davis; Edward H. Coe

Microsatellite or simple sequence repeat (SSR) markers have wide applicability for genetic analysis in crop plant improvement strategies. The objectives of this project were to isolate, characterize, and map a comprehensive set of SSR markers for maize (Zea mays L.). We developed 1051 novel SSR markers for maize from microsatellite-enriched libraries and by identification of microsatellite-containing sequences in public and private databases. Three mapping populations were used to derive map positions for 978 of these markers. The main mapping population was the intermated B73 × Mo17 (IBM) population. In mapping this intermated recombinant inbred line population, we have contributed to development of a new high-resolution map resource for maize. The primer sequences, original sequence sources, data on polymorphisms across 11 inbred lines, and map positions have been integrated with information on other public SSR markers and released through MaizeDB at URL:www.agron.missouri.edu. The maize research community now has the most detailed and comprehensive SSR marker set of any plant species.


Plant Physiology | 2002

Characterization of Three Maize Bacterial Artificial Chromosome Libraries toward Anchoring of the Physical Map to the Genetic Map Using High-Density Bacterial Artificial Chromosome Filter Hybridization

Young-Sun Yim; Georgia L. Davis; Ngozi A. Duru; Theresa A. Musket; Eric W. Linton; Joachim Messing; Michael D. McMullen; Carol Soderlund; Mary L. Polacco; Jack M. Gardiner; Edward H. Coe

Three maize (Zea mays) bacterial artificial chromosome (BAC) libraries were constructed from inbred line B73. High-density filter sets from all three libraries, made using different restriction enzymes (HindIII,EcoRI, and MboI, respectively), were evaluated with a set of complex probes including the185-bp knob repeat, ribosomal DNA, two telomere-associated repeat sequences, four centromere repeats, the mitochondrial genome, a multifragment chloroplast DNA probe, and bacteriophage λ. The results indicate that the libraries are of high quality with low contamination by organellar and λ-sequences. The use of libraries from multiple enzymes increased the chance of recovering each region of the genome. Ninety maize restriction fragment-length polymorphism core markers were hybridized to filters of the HindIII library, representing 6× coverage of the genome, to initiate development of a framework for anchoring BAC contigs to the intermated B73 × Mo17 genetic map and to mark the bin boundaries on the physical map. All of the clones used as hybridization probes detected at least three BACs. Twenty-two single-copy number core markers identified an average of 7.4 ± 3.3 positive clones, consistent with the expectation of six clones. This information is integrated into fingerprinting data generated by the Arizona Genomics Institute to assemble the BAC contigs using fingerprint contig and contributed to the process of physical map construction.


The Plant Cell | 2014

An Atlas of Soybean Small RNAs Identifies Phased siRNAs from Hundreds of Coding Genes

Siwaret Arikit; Rui Xia; Atul Kakrana; Kun Huang; Jixian Zhai; Zhe Yan; Oswaldo Valdés-López; Silvas J. Prince; Theresa A. Musket; Henry T. Nguyen; Gary Stacey; Blake C. Meyers

An extensive analysis of small RNAs in soybean identified many miRNAs and phased, secondary siRNA (phasiRNA) loci; some of these miRNAs were the triggers of the phasiRNA loci. Small RNAs are ubiquitous, versatile repressors and include (1) microRNAs (miRNAs), processed from mRNA forming stem-loops; and (2) small interfering RNAs (siRNAs), the latter derived in plants by a process typically requiring an RNA-dependent RNA polymerase. We constructed and analyzed an expression atlas of soybean (Glycine max) small RNAs, identifying over 500 loci generating 21-nucleotide phased siRNAs (phasiRNAs; from PHAS loci), of which 483 overlapped annotated protein-coding genes. Via the integration of miRNAs with parallel analysis of RNA end (PARE) data, 20 miRNA triggers of 127 PHAS loci were detected. The primary class of PHAS loci (208 or 41% of the total) corresponded to NB-LRR genes; some of these small RNAs preferentially accumulate in nodules. Among the PHAS loci, novel representatives of TAS3 and noncanonical phasing patterns were also observed. A noncoding PHAS locus, triggered by miR4392, accumulated preferentially in anthers; the phasiRNAs are predicted to target transposable elements, with their peak abundance during soybean reproductive development. Thus, phasiRNAs show tremendous diversity in dicots. We identified novel miRNAs and assessed the veracity of soybean miRNAs registered in miRBase, substantially improving the soybean miRNA annotation, facilitating an improvement of miRBase annotations and identifying at high stringency novel miRNAs and their targets.


Theoretical and Applied Genetics | 1997

Molecular mapping of a major gene conferring resistance to maize mosaic virus

Ray Ming; J. L. Brewbaker; R. C. Pratt; Theresa A. Musket; Michael D. McMullen

Abstract The objective of this study was to determine the genetic basis of resistance to maize mosaic virus (MMV). Molecular markers were used to map resistance loci to MMV in a set of 91 maize (Zea mays L.) recombinant inbred lines (RILs), derived from the cross between Hi31 (a B68 conversion resistant to MMV) and Kil4 (a Thai inbred susceptible to MMV). The RILs were evaluated for MMV resistance in disease nurseries in Hawaii in the winter of 1993 and the summer of 1994. Twenty-eight highly susceptible RILs were chosen for gene mapping using the pooled-sampling approach. Initial evidence from the pooled DNA indicated that restriction fragment length polymorphism (RFLP) probes on chromosome 3 near the centromere were biased to the susceptible parent allele. Analysis of 91 RILs at 103 RFLP loci confirmed the presence of a major MMV resistance gene on chromosome 3. The resistant allele at this locus, previously named Mv1, is present in the resistant parent Hi31 and traces back to the Argentine parent used in conferring common rust resistance to B68. We conclude that resistance to MMV in B68 and Caribbean flints involves a major gene mv1 on chromosome 3 located between RFLP markers umc102 and php20508.


Theoretical and Applied Genetics | 2007

QTL associated with Fusarium head blight resistance in the soft red winter wheat Ernie

S. Liu; Z. A. Abate; Lu Hj; Theresa A. Musket; G. L. Davis; Anne L. McKendry

Fusarium head blight (FHB), mainly caused by Fusarium graminearum Schwabe [telomorph: Gibberella zeae Schw. (Petch)], is an increasingly important disease of wheat (Triticum aestivum L.). Host-plant resistance provides the best hope for reducing economic losses associated with FHB, but new sources of resistance are limited. The moderately resistant winter wheat cultivar, Ernie, may provide a source of resistance that differs from Sumai 3 but these genes have not been mapped. Also hindering resistance breeding may be associations of resistance with agronomic traits such as late maturity that may be undesirable in some production environments. This research was conducted to identify QTL associated with type II FHB resistance (FHB severity, FHBS), and to determine if they are associated with days to anthesis (DTA), number of spikelets (NOS), and the presence/absence of awns. Two hundred and forty-three F8 recombinant inbred lines from a cross between the resistant cultivar, Ernie and susceptible parent, MO 94-317 were phenotyped for type II FHB resistance using point inoculation in the greenhouse during 2002 and 2003. Genetic linkage maps were constructed using 94 simple sequence repeat (SSR) and 146 amplified fragment length polymorphic (AFLP) markers. Over years four QTL regions on chromosomes 2B, 3B, 4BL and 5A were consistently associated with FHB resistance. These QTL explained 43.3% of the phenotypic variation in FHBS. Major QTL conditioning DTA and NOS were identified on chromosome 2D. Neither the QTL associated with DTA and NOS nor the presence/absence of awns were associated with FHB resistance in Ernie. Our results suggest that the FHB resistance in Ernie appears to differ from that in Sumai 3, thus pyramiding the QTL in Ernie with those from Sumai 3 could result in enhanced levels of FHB resistance in wheat.


BMC Genomics | 2007

A BAC pooling strategy combined with PCR-based screenings in a large, highly repetitive genome enables integration of the maize genetic and physical maps

Young-Sun Yim; Patricia Moak; Hector Sanchez-Villeda; Theresa A. Musket; Pamela Close; Patricia E. Klein; John E. Mullet; Michael D. McMullen; Zheiwei Fang; Mary L. Schaeffer; Jack M. Gardiner; Edward H. Coe; Georgia L. Davis

BackgroundMolecular markers serve three important functions in physical map assembly. First, they provide anchor points to genetic maps facilitating functional genomic studies. Second, they reduce the overlap required for BAC contig assembly from 80 to 50 percent. Finally, they validate assemblies based solely on BAC fingerprints. We employed a six-dimensional BAC pooling strategy in combination with a high-throughput PCR-based screening method to anchor the maize genetic and physical maps.ResultsA total of 110,592 maize BAC clones (~ 6x haploid genome equivalents) were pooled into six different matrices, each containing 48 pools of BAC DNA. The quality of the BAC DNA pools and their utility for identifying BACs containing target genomic sequences was tested using 254 PCR-based STS markers. Five types of PCR-based STS markers were screened to assess potential uses for the BAC pools. An average of 4.68 BAC clones were identified per marker analyzed. These results were integrated with BAC fingerprint data generated by the Arizona Genomics Institute (AGI) and the Arizona Genomics Computational Laboratory (AGCoL) to assemble the BAC contigs using the FingerPrinted Contigs (FPC) software and contribute to the construction and anchoring of the physical map. A total of 234 markers (92.5%) anchored BAC contigs to their genetic map positions. The results can be viewed on the integrated map of maize [1, 2].ConclusionThis BAC pooling strategy is a rapid, cost effective method for genome assembly and anchoring. The requirement for six replicate positive amplifications makes this a robust method for use in large genomes with high amounts of repetitive DNA such as maize. This strategy can be used to physically map duplicate loci, provide order information for loci in a small genetic interval or with no genetic recombination, and loci with conflicting hybridization-based information.


Theoretical and Applied Genetics | 1994

RFLP mapping of partially sequenced leaf cDNA clones in maize.

S. Chao; C Baysdorfer; Heredia-Diaz O; Theresa A. Musket; Xu G; Edward H. Coe

We report here the results of mapping a set of 92 leaf cDNA clones in maize. The ends of each of these cDNA clones have previously been partially sequenced, and the sequence comparison has revealed the putative function for 28 clones. It is expected that the RFLP map developed using these expressed sequence tags will be of great importance for future maize genome analysis, such as for PCR-based gene mapping or gene function identification.


Bioinformatics | 2003

Development of an integrated laboratory information management system for the maize mapping project

Hector Sanchez-Villeda; Steven G. Schroeder; Mary L. Polacco; Michael D. McMullen; Seth A. Havermann; Georgia L. Davis; Irie Vroh-Bi; Karen C. Cone; Natasha Sharopova; Young-Sun Yim; Linda Schultz; Ngozi A. Duru; Theresa A. Musket; Kate Houchins; Zhiwei Fang; Jack M. Gardiner; Edward H. Coe

MOTIVATION The development of an integrated genetic and physical map for the maize genome involves the generation of an enormous amount of data. Managing this data requires a system to aid in genotype scoring for different types of markers coming from both local and remote users. In addition, researchers need an efficient way to interact with genetic mapping software and with data files from automated DNA sequencing. They also need ways to manage primer data for mapping and sequencing and provide views of the integrated physical and genetic map and views of genetic map comparisons. RESULTS The MMP-LIMS system has been used successfully in a high-throughput mapping environment. The genotypes from 957 SSR, 1023 RFLP, 189 SNP, and 177 InDel markers have been entered and verified via MMP-LIMS. The system is flexible, and can be easily modified to manage data for other species. The software is freely available. AVAILABILITY To receive a copy of the iMap or cMap software, please fill out the form on our website. The other MMP-LIMS software is freely available at http://www.maizemap.org/bioinformatics.htm.


Scientific Reports | 2016

Landscape of genomic diversity and trait discovery in soybean

Babu Valliyodan; Dan Qiu; Gunvant Patil; Peng Zeng; Jiaying Huang; Lu Dai; Chengxuan Chen; Yanjun Li; Trupti Joshi; Li Song; Tri D. Vuong; Theresa A. Musket; Dong Xu; J. Grover Shannon; Cheng Shifeng; Xin Liu; Henry T. Nguyen

Cultivated soybean [Glycine max (L.) Merr.] is a primary source of vegetable oil and protein. We report a landscape analysis of genome-wide genetic variation and an association study of major domestication and agronomic traits in soybean. A total of 106 soybean genomes representing wild, landraces, and elite lines were re-sequenced at an average of 17x depth with a 97.5% coverage. Over 10 million high-quality SNPs were discovered, and 35.34% of these have not been previously reported. Additionally, 159 putative domestication sweeps were identified, which includes 54.34 Mbp (4.9%) and 4,414 genes; 146 regions were involved in artificial selection during domestication. A genome-wide association study of major traits including oil and protein content, salinity, and domestication traits resulted in the discovery of novel alleles. Genomic information from this study provides a valuable resource for understanding soybean genome structure and evolution, and can also facilitate trait dissection leading to sequencing-based molecular breeding.


PLOS ONE | 2015

Identification of novel QTL governing root architectural traits in an interspecific soybean population.

Lakshmi P. Manavalan; Silvas J. Prince; Theresa A. Musket; Julian M. Chaky; Rupesh K. Deshmukh; Tri D. Vuong; Li Song; Perry B. Cregan; James C. Nelson; J. Grover Shannon; James E. Specht; Henry T. Nguyen

Cultivated soybean (Glycine max L.) cv. Dunbar (PI 552538) and wild G. soja (PI 326582A) exhibited significant differences in root architecture and root-related traits. In this study, phenotypic variability for root traits among 251 BC2F5 backcross inbred lines (BILs) developed from the cross Dunbar/PI 326582A were identified. The root systems of the parents and BILs were evaluated in controlled environmental conditions using a cone system at seedling stage. The G. max parent Dunbar contributed phenotypically favorable alleles at a major quantitative trait locus on chromosome 8 (Satt315-I locus) that governed root traits (tap root length and lateral root number) and shoot length. This QTL accounted for >10% of the phenotypic variation of both tap root and shoot length. This QTL region was found to control various shoot- and root-related traits across soybean genetic backgrounds. Within the confidence interval of this region, eleven transcription factors (TFs) were identified. Based on RNA sequencing and Affymetrix expression data, key TFs including MYB, AP2-EREBP and bZIP TFs were identified in this QTL interval with high expression in roots and nodules. The backcross inbred lines with different parental allelic combination showed different expression pattern for six transcription factors selected based on their expression pattern in root tissues. It appears that the marker interval Satt315–I locus on chromosome 8 contain an essential QTL contributing to early root and shoot growth in soybean.

Collaboration


Dive into the Theresa A. Musket's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

B. R. Wiseman

Agricultural Research Service

View shared research outputs
Researchain Logo
Decentralizing Knowledge