Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Theresa Dellermann is active.

Publication


Featured researches published by Theresa Dellermann.


Nature Chemistry | 2013

Metal-free binding and coupling of carbon monoxide at a boron–boron triple bond

Holger Braunschweig; Theresa Dellermann; Rian D. Dewhurst; William C. Ewing; Kai Hammond; J. Oscar C. Jiménez-Halla; Thomas Kramer; Ivo Krummenacher; Jan Mies; Ashwini K. Phukan; Alfredo Vargas

Many metal-containing compounds, and some metal-free compounds, will bind carbon monoxide. However, only a handful of metal-containing compounds have been shown to induce the coupling of two or more CO molecules, potentially a method for the use of CO as a one-carbon-atom building block for the synthesis of organic molecules. In this work, CO was added to a boron-boron triple bond at room temperature and atmospheric pressure, resulting in a compound into which four equivalents of CO are incorporated: a flat, bicyclic, bis(boralactone). By the controlled addition of one CO to the diboryne compound, an intermediate in the CO coupling reaction was isolated and structurally characterized. Electrochemical measurements confirm the strongly reducing nature of the diboryne compound.


Journal of the American Chemical Society | 2015

Experimental Assessment of the Strengths of B–B Triple Bonds

Julian Böhnke; Holger Braunschweig; Philipp Constantinidis; Theresa Dellermann; William C. Ewing; Ingo Fischer; Kai Hammond; Florian Hupp; Jan Mies; Hans-Christian Schmitt; Alfredo Vargas

Diborynes, molecules containing homoatomic boron-boron triple bonds, have been investigated by Raman spectroscopy in order to determine the stretching frequencies of their central B≡B units as an experimental measure of homoatomic bond strengths. The observed frequencies between 1600 and 1750 cm(-1) were assigned on the basis of DFT modeling and the characteristic pattern produced by the isotopic distribution of boron. This frequency completes the series of known stretches of homoatomic triple bonds, fitting into the trend established by the long-known stretching frequencies of C≡C and N≡N triple bonds in alkynes and dinitrogen, respectively. A quantitative analysis was carried out using the concept of relaxed force constants. The results support the classification of the diboryne as a true triple bond and speak to the similarities of molecules constructed from first-row elements of the p block. Also reported are the relaxed force constants of a recently reported diborabutatriene, which again fit into the trend established by the vibrational spectroscopy of organic cumulenes. As part of these studies, a new diboryne with decreased steric bulk was synthesized, and a computational study of the rotation of the stabilizing ligands indicated alkyne-like electronic isolation of the central B2 unit.


Angewandte Chemie | 2015

From an Electron‐Rich Bis(boraketenimine) to an Electron‐Poor Diborene

Julian Böhnke; Holger Braunschweig; Theresa Dellermann; William C. Ewing; Thomas Kramer; Ivo Krummenacher; Alfredo Vargas

The reaction of the bisboracumulene (CAAC)2 B2 (CAAC=1-(2,6-diisopropylphenyl)-3,3,5,5-tetramethylpyrrolidin-2-ylidene) with excess tert-butylisocyanide resulted in complexation of the isocyanide at boron. Though this compound might be formally drawn with a lone pair on boron, these electrons are highly delocalized throughout a conjugated π-network consisting of the π-acidic CAAC and isocyanide ligands. Heating this compound to 110 °C liberated the organic periphery of both isocyanide ligands, yielding the first example of a dicyanodiborene. Cyclic voltammetry conducted on this diborene indicated the presence of reduction waves, making this compound unique among diborenes, which are otherwise highly reducing.


Nature Chemistry | 2016

Neutral zero-valent s -block complexes with strong multiple bonding

Merle Arrowsmith; Holger Braunschweig; Mehmet Ali Celik; Theresa Dellermann; Rian D. Dewhurst; William C. Ewing; Kai Hammond; Thomas Kramer; Ivo Krummenacher; Jan Mies; Krzysztof Radacki; Julia K. Schuster

The metals of the s block of the periodic table are well known to be exceptional electron donors, and the vast majority of their molecular complexes therefore contain these metals in their fully oxidized form. Low-valent main-group compounds have recently become desirable synthetic targets owing to their interesting reactivities, sometimes on a par with those of transition-metal complexes. In this work, we used stabilizing cyclic (alkyl)(amino)carbene ligands to isolate and characterize the first neutral compounds that contain a zero-valent s-block metal, beryllium. These brightly coloured complexes display very short beryllium-carbon bond lengths and linear beryllium coordination geometries, indicative of strong multiple Be-C bonding. Structural, spectroscopic and theoretical results show that the complexes adopt a closed-shell singlet configuration with a Be(0) metal centre. The surprising stability of the molecule can be ascribed to an unusually strong three-centre two-electron π bond across the C-Be-C unit.


Angewandte Chemie | 2015

The Synthesis of B2(SIDip)2 and its Reactivity Between the Diboracumulenic and Diborynic Extremes

Julian Böhnke; Holger Braunschweig; Theresa Dellermann; William C. Ewing; Kai Hammond; J. Oscar C. Jiménez-Halla; Thomas Kramer; Jan Mies

A new compound with the formula L-B2-L wherein the stabilizing ligand (L) is 1,3-bis[diisopropylphenyl]-4,5-dihydroimidazol-2-ylidene (SIDip) has been synthesized, isolated, and characterized. The π-acidity of the SIDip ligand, intermediate between the relatively non-acidic IDip (1,3-bis[diisopropylphenyl]imidazol-2-ylidene) ligand and the much more highly acidic CAAC (1-[2,6-diisopropylphenyl]-3,3,5,5-tetramethylpyrrolidin-2-ylidene) ligand, gives rise to a compound with spectroscopic, electrochemical, and structural properties between those of L-B2-L compounds stabilized by CAAC and IDip. Reactions of all three L-B2-L compounds with CO demonstrate the differences caused by their respective ligands, as the π-acidities of the CAAC and SIDip carbenes enabled the isolation of bis(boraketene) compounds (L(OC)B-B(CO)L), which could not be isolated from reactions with B2(IDip)2. However, only B2(IDip)2 and B2(SIDip)2 could be converted into bicyclic bis(boralactone) compounds.


Chemistry: A European Journal | 2016

Uncatalyzed Hydrogenation of First‐Row Main Group Multiple Bonds

Merle Arrowsmith; Julian Böhnke; Holger Braunschweig; Mehmet Ali Celik; Theresa Dellermann; Kai Hammond

Room temperature hydrogenation of an SIDep-stabilized diboryne (SIDep=1,3-bis(diethylphenyl)-4,5-dihydroimidazol-2-ylidene) and a cAAC-supported diboracumulene (cAAC=1-(2,6-diisopropylphenyl)-3,3,5,5-tetramethylpyrrolidin-2-ylidene) provided the first selective route to the corresponding 1,2-dihydrodiborenes. DFT calculations showed an overall exothermic (ΔG=19.4 kcal mol-1 ) two-step asynchronous H2 addition mechanism proceeding via a bridging hydride.


Angewandte Chemie | 2015

Reductive Insertion of Elemental Chalcogens into Boron–Boron Multiple Bonds†

Holger Braunschweig; Theresa Dellermann; William C. Ewing; Thomas Kramer; Christoph Schneider; Stefan Ullrich

The syntheses of sulfur- and selenium-bridged cyclic compounds containing boron stabilized by N-heterocyclic carbenes (NHCs) have been achieved by the reductive insertion of elemental chalcogens into boron-boron multiple bonds. The three pairs of bonding electrons between the boron atoms in the triply bonded diboryne enabled six-electron reduction reactions, resulting in the formation of [2.2.1]-bicyclic systems wherein bridgehead boron atoms are spanned by three chalcogen bridges. A similar reaction using a diborene (boron-boron double bond) resulted in the reductive transfer of both pairs of bonding electrons to three sulfur atoms, yielding a NHC-stabilized trisulfidodiborolane. The demonstration of these six- and four-electron reductions lends support to the presence of three and two pairs of bonding electrons between the boron atoms of the diboryne and diborene, respectively, a fact that may be useful in future discussions on bond order.


Angewandte Chemie | 2016

Highly Strained Heterocycles Constructed from Boron–Boron Multiple Bonds and Heavy Chalcogens

Holger Braunschweig; Philipp Constantinidis; Theresa Dellermann; William C. Ewing; Ingo Fischer; Merlin Hess; Fergus R. Knight; Anna Rempel; Christoph Schneider; Stefan Ullrich; Alfredo Vargas; J. Derek Woollins

The reactions of a diborene with elemental selenium or tellurium are shown to afford a diboraselenirane or diboratellurirane, respectively. These reactions are reminiscent of the sequestration of subvalent oxygen and nitrogen in the formation of oxiranes and aziridines; however, such reactivity is not known between alkenes and the heavy chalcogens. Although carbon is too electronegative to affect the reduction of elements with lower relative electronegativity, the highly reducing nature of the B-B double bond enables reactions with Se(0) and Te(0) . The capacity of multiple bonds between boron atoms to donate electron density is highlighted in reactions where diborynes behave as nucleophiles, attacking one of the two Te atoms of diaryltellurides, forming salts consisting of diboratellurenium cations and aryltelluride anions.


Angewandte Chemie | 2015

Exclusive π Encapsulation of Light Alkali Metal Cations by a Neutral Molecule.

Rüdiger Bertermann; Holger Braunschweig; Philipp Constantinidis; Theresa Dellermann; Rian D. Dewhurst; William C. Ewing; Ingo Fischer; Thomas Kramer; Jan Mies; Ashwini K. Phukan; Alfredo Vargas

Cation-π interactions are one of the most important classes of noncovalent bonding, and are seen throughout biology, chemistry, and materials science. However, in almost every documented case, these interactions play only a supporting role to much stronger covalent or dative bonds, thus making examples of exclusive cation-π bonding exceedingly rare. In this study, a neutral diboryne molecule is found to encapsulate the light alkali metal cations Li(+) and Na(+) in the absence of a net charge, covalent bonds, or lone-pair donor groups. The resulting encapsulation complexes are, to our knowledge, the first structurally authenticated species in which a neutral molecule binds the light alkali metals exclusively through cation-π interactions.


Journal of the American Chemical Society | 2017

Strongly Phosphorescent Transition Metal π-Complexes of Boron–Boron Triple Bonds

Holger Braunschweig; Theresa Dellermann; Rian D. Dewhurst; Benjamin Hupp; Thomas Kramer; James D. Mattock; Jan Mies; Ashwini K. Phukan; Andreas Steffen; Alfredo Vargas

Herein are reported the first π-complexes of compounds with boron-boron triple bonds with transition metals, in this case CuI. Three different compounds were isolated that differ in the number of copper atoms bound to the BB unit. Metalation of the B-B triple bonds causes lengthening of the B-B and B-CNHC bonds, as well as large upfield shifts of the 11B NMR signals, suggesting greater orbital interactions between the boron and transition metal atoms than those observed with recently published diboryne/alkali metal cation complexes. In contrast to previously reported fluorescent copper(I) π-complexes of boron-boron double bonds, the Cun-π-diboryne compounds (n = 2, 3) show intense phosphorescence in the red to near-IR region from their triplet excited states, according to their microsecond lifetimes, with quantum yields of up to 58%. While the Cu diborene bond is dominated by electrostatic interactions, giving rise to S1 and T1 states of pure IL(π-π*) nature, DFT studies show that the CuI π-complexes of diborynes reported herein exhibit enhanced metal d orbital contributions to HOMO and HOMO-1, which results in S1 and T1 having significant MLCT character, enabling strong spin-orbit coupling for highly efficient intersystem-crossing S1 → Tn and phosphorescence T1 → S0.

Collaboration


Dive into the Theresa Dellermann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julian Böhnke

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ivo Krummenacher

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Rian D. Dewhurst

Australian National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ingo Fischer

University of Würzburg

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge