Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Theresa Hill is active.

Publication


Featured researches published by Theresa Hill.


Nature Genetics | 2014

Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species

Seungill Kim; Minkyu Park; Seon-In Yeom; Yong Min Kim; Je Min Lee; Hyun Ah Lee; Eunyoung Seo; Jae Young Choi; Kyeongchae Cheong; Ki-Tae Kim; Kyongyong Jung; Gir Won Lee; Sang Keun Oh; Chungyun Bae; Saet Byul Kim; Hye Young Lee; Shin Young Kim; Myung Shin Kim; Byoung Cheorl Kang; Yeong Deuk Jo; Hee Bum Yang; Hee Jin Jeong; Won-Hee Kang; Jin Kyung Kwon; Chanseok Shin; Jae Yun Lim; June Hyun Park; Jin Hoe Huh; June Sik Kim; Byung-Dong Kim

Hot pepper (Capsicum annuum), one of the oldest domesticated crops in the Americas, is the most widely grown spice crop in the world. We report whole-genome sequencing and assembly of the hot pepper (Mexican landrace of Capsicum annuum cv. CM334) at 186.6× coverage. We also report resequencing of two cultivated peppers and de novo sequencing of the wild species Capsicum chinense. The genome size of the hot pepper was approximately fourfold larger than that of its close relative tomato, and the genome showed an accumulation of Gypsy and Caulimoviridae family elements. Integrative genomic and transcriptomic analyses suggested that change in gene expression and neofunctionalization of capsaicin synthase have shaped capsaicinoid biosynthesis. We found differential molecular patterns of ripening regulators and ethylene synthesis in hot pepper and tomato. The reference genome will serve as a platform for improving the nutritional and medicinal values of Capsicum species.


Science | 2012

Uniform ripening Encodes a Golden 2-like Transcription Factor Regulating Tomato Fruit Chloroplast Development

Ann L. T. Powell; Cuong V. Nguyen; Theresa Hill; KaLai Lam Cheng; Rosa Figueroa-Balderas; Hakan Aktas; Hamid Ashrafi; Clara Pons; Rafael Fernández-Muñoz; Ariel R. Vicente; Javier Lopez-Baltazar; Cornelius S. Barry; Yongsheng Liu; Roger T. Chetelat; Antonio Granell; Allen Van Deynze; James J. Giovannoni; Alan B. Bennett

Pretty or Sweet The grocery-store tomato that looks beautiful but tastes like tart cardboard arises from selection processes favoring phenotypes that make commercial production more reliable. Significant in that selection process was a mutation that reduced the mottled color variations of unripe green tomatoes, leaving them a uniform, pale, green. Powell et al. (p. 1711) analyzed the molecular biology of the mutation. The uniform ripening mutation turns out to disable a transcription factor called Golden 2-like (GLK2). GLK2 expression increases the fruits photosynthetic capacity, resulting in higher sugar content. Controlling when tomatoes turn from green to red requires knocking out the gene that adds flavor. Modern tomato (Solanum lycopersicum) varieties are bred for uniform ripening (u) light green fruit phenotypes to facilitate harvests of evenly ripened fruit. U encodes a Golden 2-like (GLK) transcription factor, SlGLK2, which determines chlorophyll accumulation and distribution in developing fruit. In tomato, two GLKs—SlGLK1 and SlGLK2—are expressed in leaves, but only SlGLK2 is expressed in fruit. Expressing GLKs increased the chlorophyll content of fruit, whereas SlGLK2 suppression recapitulated the u mutant phenotype. GLK overexpression enhanced fruit photosynthesis gene expression and chloroplast development, leading to elevated carbohydrates and carotenoids in ripe fruit. SlGLK2 influences photosynthesis in developing fruit, contributing to mature fruit characteristics and suggesting that selection of u inadvertently compromised ripe fruit quality in exchange for desirable production traits.


The Plant Cell | 2004

Regulation of Ovule Development

Debra J. Skinner; Theresa Hill; Charles S. Gasser

Ovule development in Arabidopsis and other plants has been the focus of classic and molecular genetic analyses in recent years. This has been an exciting time to be involved in plant developmental biology, because many genetic pathways and regulatory mechanisms have been elucidated. Continued


BMC Genomics | 2012

De novo assembly of the pepper transcriptome (Capsicum annuum): a benchmark for in silico discovery of SNPs, SSRs and candidate genes

Hamid Ashrafi; Theresa Hill; Kevin Stoffel; Alexander Kozik; Jiqiang Yao; Sebastián Reyes Chin-Wo; Allen Van Deynze

BackgroundMolecular breeding of pepper (Capsicum spp.) can be accelerated by developing DNA markers associated with transcriptomes in breeding germplasm. Before the advent of next generation sequencing (NGS) technologies, the majority of sequencing data were generated by the Sanger sequencing method. By leveraging Sanger EST data, we have generated a wealth of genetic information for pepper including thousands of SNPs and Single Position Polymorphic (SPP) markers. To complement and enhance these resources, we applied NGS to three pepper genotypes: Maor, Early Jalapeño and Criollo de Morelos-334 (CM334) to identify SNPs and SSRs in the assembly of these three genotypes.ResultsTwo pepper transcriptome assemblies were developed with different purposes. The first reference sequence, assembled by CAP3 software, comprises 31,196 contigs from >125,000 Sanger-EST sequences that were mainly derived from a Korean F1-hybrid line, Bukang. Overlapping probes were designed for 30,815 unigenes to construct a pepper Affymetrix GeneChip® microarray for whole genome analyses. In addition, custom Python scripts were used to identify 4,236 SNPs in contigs of the assembly. A total of 2,489 simple sequence repeats (SSRs) were identified from the assembly, and primers were designed for the SSRs. Annotation of contigs using Blast2GO software resulted in information for 60% of the unigenes in the assembly. The second transcriptome assembly was constructed from more than 200 million Illumina Genome Analyzer II reads (80–120 nt) using a combination of Velvet, CLC workbench and CAP3 software packages. BWA, SAMtools and in-house Perl scripts were used to identify SNPs among three pepper genotypes. The SNPs were filtered to be at least 50 bp from any intron-exon junctions as well as flanking SNPs. More than 22,000 high-quality putative SNPs were identified. Using the MISA software, 10,398 SSR markers were also identified within the Illumina transcriptome assembly and primers were designed for the identified markers. The assembly was annotated by Blast2GO and 14,740 (12%) of annotated contigs were associated with functional proteins.ConclusionsBefore availability of pepper genome sequence, assembling transcriptomes of this economically important crop was required to generate thousands of high-quality molecular markers that could be used in breeding programs. In order to have a better understanding of the assembled sequences and to identify candidate genes underlying QTLs, we annotated the contigs of Sanger-EST and Illumina transcriptome assemblies. These and other information have been curated in a database that we have dedicated for pepper project.


G3: Genes, Genomes, Genetics | 2013

An Ultra High-Density, Transcript-Based, Genetic Map of Lettuce

Maria Jose Truco; Hamid Ashrafi; Alexander Kozik; Hans van Leeuwen; John E. Bowers; Sebastian Reyes Chin Wo; Kevin Stoffel; Huaqin Xu; Theresa Hill; Allen Van Deynze; Richard W. Michelmore

We have generated an ultra-high-density genetic map for lettuce, an economically important member of the Compositae, consisting of 12,842 unigenes (13,943 markers) mapped in 3696 genetic bins distributed over nine chromosomal linkage groups. Genomic DNA was hybridized to a custom Affymetrix oligonucleotide array containing 6.4 million features representing 35,628 unigenes of Lactuca spp. Segregation of single-position polymorphisms was analyzed using 213 F7:8 recombinant inbred lines that had been generated by crossing cultivated Lactuca sativa cv. Salinas and L. serriola acc. US96UC23, the wild progenitor species of L. sativa. The high level of replication of each allele in the recombinant inbred lines was exploited to identify single-position polymorphisms that were assigned to parental haplotypes. Marker information has been made available using GBrowse to facilitate access to the map. This map has been anchored to the previously published integrated map of lettuce providing candidate genes for multiple phenotypes. The high density of markers achieved in this ultradense map allowed syntenic studies between lettuce and Vitis vinifera as well as other plant species.


PLOS ONE | 2013

Characterization of Capsicum annuum genetic diversity and population structure based on parallel polymorphism discovery with a 30K unigene Pepper GeneChip.

Theresa Hill; Hamid Ashrafi; Sebastian Reyes-Chin-Wo; JiQiang Q. Yao; Kevin Stoffel; Maria Jose Truco; Alexander Kozik; Richard W. Michelmore; Allen Van Deynze

The widely cultivated pepper, Capsicum spp., important as a vegetable and spice crop world-wide, is one of the most diverse crops. To enhance breeding programs, a detailed characterization of Capsicum diversity including morphological, geographical and molecular data is required. Currently, molecular data characterizing Capsicum genetic diversity is limited. The development and application of high-throughput genome-wide markers in Capsicum will facilitate more detailed molecular characterization of germplasm collections, genetic relationships, and the generation of ultra-high density maps. We have developed the Pepper GeneChip® array from Affymetrix for polymorphism detection and expression analysis in Capsicum. Probes on the array were designed from 30,815 unigenes assembled from expressed sequence tags (ESTs). Our array design provides a maximum redundancy of 13 probes per base pair position allowing integration of multiple hybridization values per position to detect single position polymorphism (SPP). Hybridization of genomic DNA from 40 diverse C. annuum lines, used in breeding and research programs, and a representative from three additional cultivated species (C. frutescens, C. chinense and C. pubescens) detected 33,401 SPP markers within 13,323 unigenes. Among the C. annuum lines, 6,426 SPPs covering 3,818 unigenes were identified. An estimated three-fold reduction in diversity was detected in non-pungent compared with pungent lines, however, we were able to detect 251 highly informative markers across these C. annuum lines. In addition, an 8.7 cM region without polymorphism was detected around Pun1 in non-pungent C. annuum. An analysis of genetic relatedness and diversity using the software Structure revealed clustering of the germplasm which was confirmed with statistical support by principle components analysis (PCA) and phylogenetic analysis. This research demonstrates the effectiveness of parallel high-throughput discovery and application of genome-wide transcript-based markers to assess genetic and genomic features among Capsicum annuum.


BMC Genomics | 2012

Development and application of a 6.5 million feature Affymetrix Genechip® for massively parallel discovery of single position polymorphisms in lettuce (Lactuca spp.).

Kevin Stoffel; Hans van Leeuwen; Alexander Kozik; David Caldwell; Hamid Ashrafi; Xinping Cui; Xiaoping Tan; Theresa Hill; Sebastian Reyes-Chin-Wo; Maria Jose Truco; Richard W. Michelmore; Allen Van Deynze

BackgroundHigh-resolution genetic maps are needed in many crops to help characterize the genetic diversity that determines agriculturally important traits. Hybridization to microarrays to detect single feature polymorphisms is a powerful technique for marker discovery and genotyping because of its highly parallel nature. However, microarrays designed for gene expression analysis rarely provide sufficient gene coverage for optimal detection of nucleotide polymorphisms, which limits utility in species with low rates of polymorphism such as lettuce (Lactuca sativa).ResultsWe developed a 6.5 million feature Affymetrix GeneChip® for efficient polymorphism discovery and genotyping, as well as for analysis of gene expression in lettuce. Probes on the microarray were designed from 26,809 unigenes from cultivated lettuce and an additional 8,819 unigenes from four related species (L. serriola, L. saligna, L. virosa and L. perennis). Where possible, probes were tiled with a 2 bp stagger, alternating on each DNA strand; providing an average of 187 probes covering approximately 600 bp for each of over 35,000 unigenes; resulting in up to 13 fold redundancy in coverage per nucleotide. We developed protocols for hybridization of genomic DNA to the GeneChip® and refined custom algorithms that utilized coverage from multiple, high quality probes to detect single position polymorphisms in 2 bp sliding windows across each unigene. This allowed us to detect greater than 18,000 polymorphisms between the parental lines of our core mapping population, as well as numerous polymorphisms between cultivated lettuce and wild species in the lettuce genepool. Using marker data from our diversity panel comprised of 52 accessions from the five species listed above, we were able to separate accessions by species using both phylogenetic and principal component analyses. Additionally, we estimated the diversity between different types of cultivated lettuce and distinguished morphological types.ConclusionBy hybridizing genomic DNA to a custom oligonucleotide array designed for maximum gene coverage, we were able to identify polymorphisms using two approaches for pair-wise comparisons, as well as a highly parallel method that compared all 52 genotypes simultaneously.


Genetics | 2006

Arabidopsis SHORT INTEGUMENTS 2 is a mitochondrial DAR GTPase

Theresa Hill; Jean Broadhvest; Robert K. Kuzoff; Charles S. Gasser

The Arabidopsis short integuments 2-1 (sin2-1) mutant produces ovules with short integuments due to early cessation of cell division in these structures. SIN2 was isolated and encodes a putative GTPase sharing features found in the novel DAR GTPase family. DAR proteins share a signature DAR motif and a unique arrangement of the four conserved GTPase G motifs. We found that DAR GTPases are present in all examined prokaryotes and eukaryotes and that they have diversified into four paralogous lineages in higher eukaryotes. Eukaryotic members of the SIN2 clade of DAR GTPases have been found to localize to mitochondria and are related to eubacterial proteins that facilitate essential steps in biogenesis of the large ribosomal subunit. We propose a similar role for SIN2 in mitochondria. A sin2 insertional allele has ovule effects similar to sin2-1, but more pronounced pleiotropic effects on vegetative and floral development. The diverse developmental effects of the mitochondrial SIN2 GTPase support a mitochondrial role in the regulation of multiple developmental pathways.


The Plant Genome | 2014

CaDMR1 Cosegregates with QTL Pc5.1 for Resistance to Phytophthora capsici in Pepper ( Capsicum annuum )

William Z. Rehrig; Hamid Ashrafi; Theresa Hill; James Prince; Allen Van Deynze

A major problem for the pepper (Capsicum annuum) industry is the root rot disease caused by Phytophthora capsici (Pc), to which all commercial varieties suffer yield losses despite good management practices and available landraces with high levels of resistance. A high‐density map with 3887 markers was generated in a set of recombinant inbred lines (RIL) derived from the highly resistant Capsicum annuum accession Criollo de Morelos‐334 and Early Jalapeño. These lines have been systematically screened for Pc resistance against a set of isolates collected from Mexico, New Mexico, New Jersey, California, Michigan and Tennessee. Quantitative trait loci (QTL) associated with effective resistance across isolates have been identified and validated with SNP markers across additional segregating populations. By leveraging transcriptomic and genomic information, we describe CaDMR1, a homoserine kinase (HSK), as a candidate gene responsible for the major QTL on chromosome P5 for resistance to Pc. SNP markers for the resistant allele were validated to facilitate gene pyramiding schemes for recurrent selection in pepper.


Theoretical and Applied Genetics | 2014

CaGLK2 regulates natural variation of chlorophyll content and fruit color in pepper fruit

Arnon Brand; Yelena Borovsky; Theresa Hill; Khalis Afnan Abdul Rahman; Aharon Bellalou; Allen Van Deynze; Ilan Paran

Key messageWe provide multiple evidences thatCaGLK2underlies a quantitative trait locus controlling natural variation in chlorophyll content and immature fruit color of pepper via modulating chloroplast compartment size.AbstractPepper fruit quality is attributed to a variety of traits, affecting visual appearance, flavor, chemical composition and nutritional value. Among the quality traits, fruit color is of primary importance because the pigments that confer color are associated with nutrition, health and flavor. Although gene models have been proposed for qualitative aspects of fruit color, large natural variation in quantitative pigment content and fruit color exists in pepper. However, its genetic basis is largely unknown which hampers its utilization for plant improvement. We studied the role of GLK2, a GOLDEN2-like transcription factor that regulates chloroplast development in controlling natural variation for chlorophyll content and immature fruit color of pepper. The role of GLK2 in regulating fruit development has been studied previously in tomato using ectopic expression and the uniform ripening mutant analyses. However, pepper provides a unique opportunity to further study the function of this gene because of the wide natural variation of fruit colors in this species. Segregation, sequencing and expression analyses indicated that pepper GLK2 (CaGLK2) corresponds to the recently reported pc10 QTL that controls chloroplast development and chlorophyll content in pepper. CaGLK2 exerts its effect on chloroplast compartment size predominantly during immature fruit development. We show that the genetic background, sequence variation and expression pattern confer a complex and multi-level regulation of CaGLK2 and fruit color in Capsicum. The positive effect on fruit quality predominantly at the green stage conferred by CaGLK2 can be utilized to breed green pepper varieties with improved nutritional values and taste.

Collaboration


Dive into the Theresa Hill's collaboration.

Top Co-Authors

Avatar

Hamid Ashrafi

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kevin Stoffel

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge