Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Theresa L. Shanahan is active.

Publication


Featured researches published by Theresa L. Shanahan.


The Journal of Physiology | 1999

Ageing and the circadian and homeostatic regulation of human sleep during forced desynchrony of rest, melatonin and temperature rhythms.

Derk-Jan Dijk; Jeanne F. Duffy; Eymard Riel; Theresa L. Shanahan; Charles A. Czeisler

1 The circadian timing system has been implicated in age‐related changes in sleep structure, timing and consolidation in humans. 2 We investigated the circadian regulation of sleep in 13 older men and women and 11 young men by forced desynchrony of polysomnographically recorded sleep episodes (total, 482; 9 h 20 min each) and the circadian rhythms of plasma melatonin and core body temperature. 3 Stage 4 sleep was reduced in older people. Overall levels of rapid eye movement (REM) sleep were not significantly affected by age. The latencies to REM sleep were shorter in older people when sleep coincided with the melatonin rhythm. REM sleep was increased in the first quarter of the sleep episode and the increase of REM sleep in the course of sleep was diminished in older people. 4 Sleep propensity co‐varied with the circadian rhythms of body temperature and plasma melatonin in both age groups. Sleep latencies were longest just before the onset of melatonin secretion and short sleep latencies were observed close to the temperature nadir. In older people sleep latencies were longer close to the crest of the melatonin rhythm. 5 In older people sleep duration was reduced at all circadian phases and sleep consolidation deteriorated more rapidly during the course of sleep, especially when the second half of the sleep episode occurred after the crest of the melatonin rhythm. 6 The data demonstrate age‐related decrements in sleep consolidation and increased susceptibility to circadian phase misalignment in older people. These changes, and the associated internal phase advance of the propensity to awaken from sleep, appear to be related to the interaction between a reduction in the homeostatic drive for sleep and a reduced strength of the circadian signal promoting sleep in the early morning.


The American Journal of Medicine | 1999

Do plasma melatonin concentrations decline with age

Jamie M. Zeitzer; Jessica E Daniels; Jeanne F. Duffy; Elizabeth B. Klerman; Theresa L. Shanahan; Derk-Jan Dijk; Charles A. Czeisler

PURPOSE Numerous reports that secretion of the putative sleep-promoting hormone melatonin declines with age have led to suggestions that melatonin replacement therapy be used to treat sleep problems in older patients. We sought to reassess whether the endogenous circadian rhythm of plasma melatonin concentration changes with age in healthy drug-free adults. METHODS We analyzed the amplitude of plasma melatonin profiles during a constant routine in 34 healthy drug-free older subjects (20 women and 14 men, aged 65 to 81 years) and compared them with 98 healthy drug-free young men (aged 18 to 30 years). RESULTS We could detect no significant difference between a healthy and drug-free group of older men and women as compared to one of young men in the endogenous circadian amplitude of the plasma melatonin rhythm, as described by mean 24-hour average melatonin concentration (70 pmol/liter vs 73 pmol/liter, P = 0.97), or the duration (9.3 hours vs 9.1 hours, P = 0.43), mean (162 pmol/liter vs 161 pmol/liter, P = 0.63), or integrated area (85,800 pmol x min/liter vs 86,700 pmol x min/liter, P = 0.66) of the nocturnal peak of plasma melatonin. CONCLUSION These results do not support the hypothesis that reduction of plasma melatonin concentration is a general characteristic of healthy aging. Should melatonin replacement therapy or melatonin supplementation prove to be clinically useful, we recommend that an assessment of endogenous melatonin be carried out before such treatment is used in older patients.


The Journal of Physiology | 1997

Variation of electroencephalographic activity during non-rapid eye movement and rapid eye movement sleep with phase of circadian melatonin rhythm in humans

Derk-Jan Dijk; Theresa L. Shanahan; Jeanne F. Duffy; Joseph M. Ronda; Charles A. Czeisler

1 The circadian pacemaker regulates the timing, structure and consolidation of human sleep. The extent to which this pacemaker affects electroencephalographic (EEG) activity during sleep remains unclear. 2 To investigate this, a total of 1.22 million power spectra were computed from EEGs recorded in seven men (total, 146 sleep episodes; 9 h 20 min each) who participated in a one‐month‐long protocol in which the sleep–wake cycle was desynchronized from the rhythm of plasma melatonin, which is driven by the circadian pacemaker. 3 In rapid eye movement (REM) sleep a small circadian variation in EEG activity was observed. The nadir of the circadian rhythm of α‐activity (8.25–10.5 Hz) coincided with the end of the interval during which plasma melatonin values were high, i.e. close to the crest of the REM sleep rhythm. 4 In non‐REM sleep, variation in EEG activity between 0.25 and 11.5Hz was primarily dependent on prior sleep time and only slightly affected by circadian phase, such that the lowest values coincided with the phase of melatonin secretion. 5 In the frequency range of sleep spindles, high‐amplitude circadian rhythms with opposite phase positions relative to the melatonin rhythm were observed. Low‐frequency sleep spindle activity (12.25–13.0 Hz) reached its crest and high‐frequency sleep spindle activity (14.25–15.5Hz) reached its nadir when sleep coincided with the phase of melatonin secretion. 6 These data indicate that the circadian pacemaker induces changes in EEG activity during REM and non‐REM sleep. The changes in non‐REM sleep EEG spectra are dissimilar from the spectral changes induced by sleep deprivation and exhibit a close temporal association with the melatonin rhythm and the endogenous circadian phase of sleep consolidation.


Journal of Biological Rhythms | 2002

Photic Resetting of the Human Circadian Pacemaker in the Absence of Conscious Vision

Elizabeth B. Klerman; Theresa L. Shanahan; Daniel J. Brotman; D. W. Rimmer; Jonathan S. Emens; Joseph F. Rizzo; Charles A. Czeisler

Ocular light exposure patterns are the primary stimuli for entraining the human circadian system to the local 24-h day. Many totally blind persons cannot use these stimuli and, therefore, have circadian rhythms that are not entrained. However, a few otherwise totally blind persons retain the ability to suppress plasma melatonin concentrations after ocular light exposure, probably using a neural pathway that includes the site of the human circadian pacemaker, suggesting that light information is reaching this site. To test definitively whether ocular light exposure could affect the circadian pacemaker of some blind persons and whether melatonin suppression in response to bright light correlates with light-induced phase shifts of the circadian system, the authors performed experiments with 5 totally blind volunteers using a protocol known to induce phase shifts of the circadian pacemaker in sighted individuals. In the 2 blind individuals who maintained light-induced melatonin suppression, the circadian system was shifted by appropriately timed bright-light stimuli. These data demonstrate that light can affect the circadian pacemaker of some totally blind individuals— either by altering the phase of the circadian pacemaker or by affecting its amplitude. They are consistent with data from animal studies demonstrating that there are different neural pathways and retinal cells that relay photic information to the brain: one for conscious light perception and the other for non-image-forming functions.


Journal of Biological Rhythms | 1997

Resetting the Melatonin Rhythm with Light in Humans

Theresa L. Shanahan; Jamie M. Zeitzer; Charles A. Czeisler

The endogenous circadian rhythm of melatonin in humans provides information regarding the resetting response of the human circadian timing system to changes in the light-dark (LD) cycle. Alterations in the LD cycle have both acute and chronic effects on the observed melatonin rhythm. Investigations to date have firmly established that the melatonin rhythm can be reentrained following an inversion of the LD cycle. Exposure to bright light and darkness given over a series of days can rapidly induce large-magnitude phase shifts of the melatonin rhythm. Even single pulses of bright light can shift the timing of the melatonin rhythm. Recent data have demonstrated that lower light intensities than originally believed are capable of resetting the melatonin rhythm and that stimulation of photopically sensitive photoreceptors (i.e., cones) is sufficient to reset the endogenous circadian melatonin rhythm. In addition to phase resetting, exposure to light of critical timing, strength, and duration can attenuate the amplitude of the endogenous circadian rhythm of melatonin. Measurement of melatonin throughout resetting trials provides a dynamic view of the resetting response of the human circadian pacemaker to light. Future studies of the melatonin rhythm in humans may further characterize the resetting response of the human circadian timing system to light.


PLOS ONE | 2012

Amplitude Reduction and Phase Shifts of Melatonin, Cortisol and Other Circadian Rhythms after a Gradual Advance of Sleep and Light Exposure in Humans

Derk-Jan Dijk; Jeanne F. Duffy; Edward J. Silva; Theresa L. Shanahan; Diane B. Boivin; Charles A. Czeisler

Background The phase and amplitude of rhythms in physiology and behavior are generated by circadian oscillators and entrained to the 24-h day by exposure to the light-dark cycle and feedback from the sleep-wake cycle. The extent to which the phase and amplitude of multiple rhythms are similarly affected during altered timing of light exposure and the sleep-wake cycle has not been fully characterized. Methodology/Principal Findings We assessed the phase and amplitude of the rhythms of melatonin, core body temperature, cortisol, alertness, performance and sleep after a perturbation of entrainment by a gradual advance of the sleep-wake schedule (10 h in 5 days) and associated light-dark cycle in 14 healthy men. The light-dark cycle consisted either of moderate intensity ‘room’ light (∼90–150 lux) or moderate light supplemented with bright light (∼10,000 lux) for 5 to 8 hours following sleep. After the advance of the sleep-wake schedule in moderate light, no significant advance of the melatonin rhythm was observed whereas, after bright light supplementation the phase advance was 8.1 h (SEM 0.7 h). Individual differences in phase shifts correlated across variables. The amplitude of the melatonin rhythm assessed under constant conditions was reduced after moderate light by 54% (17–94%) and after bright light by 52% (range 12–84%), as compared to the amplitude at baseline in the presence of a sleep-wake cycle. Individual differences in amplitude reduction of the melatonin rhythm correlated with the amplitude of body temperature, cortisol and alertness. Conclusions/Significance Alterations in the timing of the sleep-wake cycle and associated bright or moderate light exposure can lead to changes in phase and reduction of circadian amplitude which are consistent across multiple variables but differ between individuals. These data have implications for our understanding of circadian organization and the negative health outcomes associated with shift-work, jet-lag and exposure to artificial light.


Journal of Biological Rhythms | 1999

Melatonin rhythm observed throughout a three-cycle bright-light stimulus designed to reset the human circadian pacemaker.

Theresa L. Shanahan; Richard E. Kronauer; Jeanne F. Duffy; Charles A. Czeisler

Exposure to light and darkness can rapidly induce phase shifts of the human circadian pacemaker. A type 0 phase response curve (PRC) to light that has been reported for humans was based on circadian phase data collected from constant routines performed before and after a three-cycle light stimulus, but resetting data observed throughout the entire resetting protocol have not been previously reported. Pineal melatonin secretion is governed by the hypothalamic circadian pacemaker via a well-defined neural pathway and is reportedly less subject to the masking effects of sleep and activity than body temperature. The authors reasoned that observation of the melatonin rhythm throughout the three-cycle light resetting trials could provide daily phase-resetting information, allowing a dynamic view of the resetting response of the circadian pacemaker to light. Subjects (n = 12) living in otherwise dim light (~10-15 lux) were exposed to a noncritical stimulus of three cycles of bright light (~9500 lux for 5 h per day) timed to phase advance or phase delay the human circadian pacemaker; control subjects (n = 11) were scheduled to the same protocols but exposed to three 5-h darkness cycles instead of light. Subjects underwent initial and final constant routine phase assessments; hourly melatonin samples and body temperature data were collected throughout the protocol. Average daily phase shifts of 1 to 3 h were observed in 11 of 12 subjects receiving the bright light, supporting predictions obtained using Kronauer’s phase-amplitude model of the resetting response of the human circadian pacemaker. The melatonin rhythm in the 12th subject progressively attenuated in amplitude throughout the resetting trial, becoming undetectable for > 32 hours preceding an abrupt reappearance of the rhythm at a shifted phase with a recovered amplitude. The data from control subjects who remained in dim lighting and darkness delayed on average – 0.2 h per day, consistent with the daily delay expected due to the longer than 24-h intrinsic period of the human circadian pacemaker. Both temperature and melatonin rhythms shifted by equivalent amounts in both bright light-treated and control subjects (R = 0.968; p < 0.0001; n = 23). Observation of the melatonin rhythm throughout a three-cycle resetting trial has provided a dynamic view of the daily phase-resetting response of the human circadian pacemaker. Taken together with the observation of strong type 0 resetting in humans in response to the same three-cycle stimulus applied at a critical phase, these data confirm the importance of considering both phase and amplitude when describing the resetting of the human circadian pacemaker by light.


Journal of Biological Rhythms | 1999

Nonentrained circadian rhythms of melatonin in submariners scheduled to an 18-hour day.

Tamsin Lisa Kelly; David F. Neri; Jeffrey T. Grill; David Ryman; Phillip D. Hunt; Derk-Jan Dijk; Theresa L. Shanahan; Charles A. Czeisler

The human circadian timing system has previously been shown to free run with a period slightly longer than 24 h in subjects living in the laboratory under conditions of forced desynchrony. In forced desynchrony, subjects are shielded from bright light and periodic time cues and are required to live on a day length outside the range of circadian entrainment. The work schedule used for most personnel aboard American submarines is6hon duty alternating with 12 h off duty. This imposed 18-h cycle is too short for human circadian synchronization, especially given that there is no bright-light exposure aboard submarines. However, crew members are exposed to 24-h stimuli that could mediate synchronization, such as clocks and social contacts with personnel who are living on a 24-h schedule. The authors investigated circadian rhythms of salivary melatonin in 20 crew members during a prolonged voyage on a Trident nuclear submarine. The authors found that in crew members living on the 18-h duty cycle, the endogenous rhythm of melatonin showed an average period of 24.35 h (n = 12, SD = 0.18 h). These data indicate that social contacts and knowledge of clock time are insufficient for entrainment to a 24-h period in personnel living by an 18-h rest-activity cycle aboard a submarine.


Neurology | 2009

MELATONIN DEFICIENCY AND DISRUPTED CIRCADIAN RHYTHMS IN PEDIATRIC SURVIVORS OF CRANIOPHARYNGIOMA

Jonathan Lipton; Megerian Jt; Sanjeev V. Kothare; Yoon-Jae Cho; Theresa L. Shanahan; Chart H; Richard Ferber; Adler-Golden L; Laurie E. Cohen; Charles A. Czeisler; Scott L. Pomeroy

Craniopharyngiomas are the most common extraneural tumors of the CNS in children.1 Because craniopharyngiomas usually grow along the anatomic midline, the tumors or their treatments (surgical excision and radiation) frequently lead to hypopituitarism, visual field defects, obesity, sleep abnormalities, and daytime hypersomnolence (DH).2,3 DH persists despite hormone replacement or treatment of commonly associated obstructive sleep apnea (OSA). We hypothesized that disrupted sleep patterns in patients with craniopharyngioma result from dysfunction of the hypothalamic circadian pacemaker located in the suprachiasmatic nucleus, which controls the timing of the daily sleep propensity rhythm. Daily variations in levels of the pineal hormone melatonin serve as a marker of the function of this system. Low salivary melatonin has been documented in obese craniopharyngioma survivors and melatonin supplementation has proved beneficial in some cases; however, a detailed analysis of circadian rhythms in this patient population had not been performed.4 ### Methods. Subjects older than 8 years of age with self-reported DH requiring daytime stimulant medication were recruited from a pool of 42 craniopharyngioma survivors treated at the Children’s Hospital Boston (CHB)/Dana-Farber Cancer Institute Brain Tumor Program between 1990 and 2002 by a single neurologist (S.L.P.). Four subjects were enrolled after informed consent was obtained in accordance with the Committee on Clinical Research. Three subjects (2 female, 1 male) ages 15, 15, and 22 completed the study. All had undergone both surgical extirpation and radiotherapy, were morbidly obese (BMI 41–54; normal 17–25), had panhypopituitarism requiring hormone supplementation, and had mild REM-related OSA, and 1 had a seizure disorder. Wrist actigraphy was obtained for 2 to 3 weeks prior to admission …


Science | 1999

Stability, Precision, and Near-24-Hour Period of the Human Circadian Pacemaker

Charles A. Czeisler; Jeanne F. Duffy; Theresa L. Shanahan; Emery N. Brown; Jude F. Mitchell; David W. Rimmer; Joseph M. Ronda; Edward J. Silva; James S. Allan; Jonathan S. Emens; Derk-Jan Dijk; Richard E. Kronauer

Collaboration


Dive into the Theresa L. Shanahan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeanne F. Duffy

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elizabeth B. Klerman

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Diane B. Boivin

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Heinz Martens

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge