Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Theresa M. LaVallee is active.

Publication


Featured researches published by Theresa M. LaVallee.


Cancer Cell | 2003

2ME2 inhibits tumor growth and angiogenesis by disrupting microtubules and dysregulating HIF.

Nicola J. Mabjeesh; Daniel Escuin; Theresa M. LaVallee; Victor Pribluda; Glenn M. Swartz; Michelle S. Johnson; Margaret T. Willard; Hua Zhong; Jonathan W. Simons; Paraskevi Giannakakou

Inhibition of angiogenesis is an important new modality for cancer treatment. 2-methoxyestradiol (2ME2) is a novel antitumor and antiangiogenic agent, currently in clinical trials, whose molecular mechanism of action remains unclear. Herein, we report that 2ME2 inhibits tumor growth and angiogenesis at concentrations that efficiently disrupt tumor microtubules (MTs) in vivo. Mechanistically, we found that 2ME2 downregulates hypoxia-inducible factor-1 (HIF) at the posttranscriptional level and inhibits HIF-1-induced transcriptional activation of VEGF expression. Inhibition of HIF-1 occurs downstream of the 2ME2/tubulin interaction, as disruption of interphase MTs is required for HIF-alpha downregulation. These data establish 2ME2 as a small molecule inhibitor of HIF-1 and provide a mechanistic link between the disruption of the MT cytoskeleton and inhibition of angiogenesis.


International Journal of Oncology | 2012

MEDI3617, a human anti-Angiopoietin 2 monoclonal antibody, inhibits angiogenesis and tumor growth in human tumor xenograft models

Ching Ching Leow; Karen Coffman; Ivan Inigo; Shannon Breen; Meggan Czapiga; Serguei Soukharev; Neill Gingles; Norman Peterson; Christine Fazenbaker; Rob Woods; Bahija Jallal; Sally-Ann Ricketts; Theresa M. LaVallee; Steve Coats; Yong Chang

Angiopoietin 2 (Ang2) is an important regulator of angiogenesis, blood vessel maturation and integrity of the vascular endothelium. The correlation between the dynamic expression of Ang2 in tumors with regions of high angiogenic activity and a poor prognosis in many tumor types makes Ang2 an ideal drug target. We have generated MEDI3617, a human anti-Ang2 monoclonal antibody that neutralizes Ang2 by preventing its binding to the Tie2 receptor in vitro, and inhibits angiogenesis and tumor growth in vivo. Treatment of mice with MEDI3617 resulted in inhibition of angiogenesis in several mouse models including: FGF2-induced angiogenesis in a basement extract plug model, tumor and retinal angiogenesis. In xenograft tumor models, treatment with MEDI3617 resulted in a reduction in tumor angiogenesis and an increase in tumor hypoxia. The administration of MEDI3617 as a single agent to mice bearing human tumor xenografts resulted in tumor growth inhibition against a broad spectrum of tumor types. Combining MEDI3617 with chemotherapy or bevacizumab resulted in a delay in tumor growth and no body weight loss was observed in the combination groups. These results, combined with pharmacodynamic studies, demonstrate that treatment of tumor-bearing mice with MEDI3617 significantly inhibited tumor growth as a single agent by blocking tumor angiogenesis. Together, these data show that MEDI3617 is a robust antiangiogenic agent and support the clinical evaluation and biomarker development of MEDI3617 in cancer patients.


Cancer Research | 2006

Antitumor Effect of 2-Methoxyestradiol in a Rat Orthotopic Brain Tumor Model

Seung Hee Kang; Heidi T. Cho; Sarojini N. Devi; Zhaobin Zhang; Daniel Escuin; Zhongxing Liang; Hui Mao; Daniel J. Brat; Jeffrey J. Olson; Jonathan W. Simons; Theresa M. LaVallee; Paraskevi Giannakakou; Erwin G. Van Meir; Hyunsuk Shim

Grade 4 malignant glioma (GBM) is a fatal disease despite aggressive surgical and adjuvant therapies. The hallmark of GBM tumors is the presence of pseudopalisading necrosis and microvascular proliferation. These tumor cells are hypoxic and express hypoxia-inducible factor-1 (HIF-1), a prosurvival transcription factor that promotes formation of neovasculature through activation of target genes, such as vascular endothelial growth factor. Here, we evaluated whether 2-methoxyestradiol, a microtubule and HIF-1 inhibitor, would have therapeutic potential for this disease in a 9L rat orthotopic gliosarcoma model using a combination of noninvasive imaging methods: magnetic resonance imaging to measure the tumor volume and bioluminescence imaging for HIF-1 activity. After imaging, histologic data were subsequently evaluated to elucidate the drug action mechanism in vivo. Treatment with 2-methoxyestradiol (60-600 mg/kg/d) resulted in a dose-dependent inhibition of tumor growth. This effect was also associated with improved tumor oxygenation as assessed by pimonidazole staining, decreased HIF-1alpha protein levels, and microtubule destabilization as assessed by deacetylation. Our results indicate that 2-methoxyestradiol may be a promising chemotherapeutic agent for the treatment of malignant gliomas, with significant growth inhibition. Further studies are needed to assess the effect of low or intermediate doses of 2-methoxyestradiol in combination with chemotherapeutic agents in clinical studies focused on malignant gliomas. In addition to showing tumor growth inhibition, we identified three potential surrogate biomarkers to determine the efficacy of 2-methoxyestradiol therapy: decreased HIF-1alpha levels, alpha-tubulin acetylation, and degree of hypoxia as determined by pimonidazole staining.


Molecular Cancer Therapeutics | 2008

Significant antitumor activity in vivo following treatment with the microtubule agent ENMD-1198

Theresa M. LaVallee; Patricia Burke; Glenn M. Swartz; Ernest Hamel; Gregory E. Agoston; Jamshed H. Shah; Lita Suwandi; Art Hanson; William E. Fogler; Carolyn Sidor; Anthony M. Treston

Clinical studies using the microtubule-targeting agent 2-methoxyestradiol (2ME2; Panzem) in cancer patients show that treatment is associated with clinical benefit, including prolonged stable disease, complete and partial responses, and an excellent safety profile. Studies have shown that 2ME2 is metabolized by conjugation at positions 3 and 17 and oxidation at position 17. To define structure-activity relationships for these positions of 2ME2 and to generate metabolically stable analogues with improved anti-tubulin properties, a series of analogues was generated and three lead analogues were selected, ENMD-1198, ENMD-1200, and ENMD-1237. These molecules showed improved metabolic stability with >65% remaining after 2-h incubation with hepatocytes. Pharmacokinetic studies showed that oral administration of the compounds resulted in increased plasma levels compared with 2ME2. All three analogues bind the colchicine binding site of tubulin, induce G2-M cell cycle arrest and apoptosis, and reduce hypoxia-inducible factor-1α levels. ENMD-1198 and ENMD-1200 showed improved in vitro antiproliferative activities. Significant reductions in tumor volumes compared with vehicle-treated mice were observed in an orthotopic breast carcinoma (MDA-MB-231) xenograft model following daily oral treatment with all compounds (ANOVA, P < 0.05). Significantly improved median survival time was observed with ENMD-1198 and ENMD-1237 (200 mg/kg/d) in a Lewis lung carcinoma metastatic model (P < 0.05). In both tumor models, the high-dose group of ENMD-1198 showed antitumor activity equivalent to that of cyclophosphamide. ENMD-1198 was selected as the lead molecule in this analogue series and is currently in a phase I clinical trial in patients with refractory solid tumors. [Mol Cancer Ther 2008;7(6):1472–82]


Cancer Research | 2005

B-Tubulin Mutations Are Associated with Resistance to 2-Methoxyestradiol in MDA-MB-435 Cancer Cells

Yesina Gökmen-Polar; Daniel Escuin; Chad D. Walls; Sharon E. Soule; Yuefang Wang; Kerry L. Sanders; Theresa M. LaVallee; Mu Wang; Brian Guenther; Paraskevi Giannakakou; George W. Sledge

2-Methoxyestradiol is an estradiol metabolite with significant antiproliferative and antiangiogenic activity independent of estrogen receptor status. To identify a molecular basis for acquired 2-methoxyestradiol resistance, we generated a stable 2-methoxyestradiol-resistant (2ME2R) MDA-MB-435 human cancer cell line by stepwise exposure to increasing 2-methoxyestradiol concentrations. 2ME2R cells maintained in the presence of the drug and W435 cells maintained in the absence of the drug showed 32.34- to 40.07-fold resistance to 2-methoxyestradiol. Cross-resistance was observed to Vinca alkaloids, including vincristine, vinorelbine, and vinblastine (4.29- to 6.40-fold), but minimal resistance was seen to colchicine-binding agents including colchicine, colcemid, and AVE8062A (1.72- to 2.86-fold). No resistance was observed to paclitaxel and epothilone B, polymerizing agents (0.89- to 1.14-fold). Genomic sequencing identified two different heterozygous point mutations in the class I (M40) isotype of beta-tubulin at amino acids 197 (Dbeta197N) and 350 (Kbeta350N) in 2ME2R cells. Tandem mass spectrometry confirmed the presence of both wild-type and the mutant beta-tubulin in 2ME2R cells at the protein level. Consistently, treatment of parental P435 cells with 2-methoxyestradiol resulted in a dose-dependent depolymerization of microtubules, whereas 2ME2R cells remained unaffected. In contrast, paclitaxel affected both cell lines. In the absence of 2-methoxyestradiol, 2ME2R cells were characterized by an elevated level of detyrosination. Upon 2-methoxyestradiol treatment, levels of acetylated and detyrosinated tubulins decreased in P435 cells, while remaining constant in 2ME2R cells. These results, together with our structure-based modeling, show a tight correlation between the antitubulin and antiproliferative effects of 2-methoxyestradiol, consistent with acquired tubulin mutations contributing to 2-methoxyestradiol resistance.


PLOS ONE | 2011

Altered expression of insulin receptor isoforms in breast cancer.

Jiaqi Huang; Chris Morehouse; Katie Streicher; Brandon W. Higgs; Jin Gao; Meggan Czapiga; Anmarie Boutrin; Wei Zhu; Philip Brohawn; Yong Chang; Jaye Viner; Theresa M. LaVallee; Laura Richman; Bahija Jallal; Yihong Yao

Purpose Insulin-like growth factor (IGF) signaling through human insulin receptor isoform A (IR-A) contributes to tumorigenesis and intrinsic resistance to anti-IGF1R therapy. In the present study, we (a) developed quantitative TaqMan real time-PCR-based assays (qRT-PCR) to measure human insulin receptor isoforms with high specificity, (b) evaluated isoform expression levels in molecularly-defined breast cancer subtypes, and (c) identified the IR-A:IR-B mRNA ratio as a potential biomarker guiding patient stratification for anti-IGF therapies. Experimental Design mRNA expression levels of IR-A and IR-B were measured in 42 primary breast cancers and 19 matched adjacent normal tissues with TaqMan qRT-PCR assays. The results were further confirmed in 165 breast cancers. The tumor samples were profiled using whole genome microarrays and subsequently subtyped using the PAM50 breast cancer gene signature. The relationship between the IR-A:IR-B ratio and cancer subtype, as well as markers of proliferation were characterized. Results The mRNA expression levels of IR-A in the breast tumors were similar to those observed in the adjacent normal tissues, while the mRNA levels of IR-B were significantly decreased in tumors. The IR-A:IR-B ratio was significantly higher in luminal B breast cancer than in luminal A. Strong concordance between the IR-A:IR-B ratio and the composite Oncotype DX proliferation score was observed for stratifying the latter two breast cancer subtypes. Conclusions The reduction in IR-B expression is the key to the altered IR-A:IR-B ratio observed in breast cancer. The IR-A:IR-B ratio may have biomarker utility in guiding a patient stratification strategy for an anti-IGF therapeutic.


Clinical Cancer Research | 2014

Phase I Dose-Escalation Study of MEDI-573, a Bispecific, Antiligand Monoclonal Antibody against IGFI and IGFII, in Patients with Advanced Solid Tumors

Paul Haluska; Michael E. Menefee; Elizabeth R. Plimack; Jonathan E. Rosenberg; Donald W. Northfelt; Theresa M. LaVallee; Li Shi; Xiang-Qing Yu; Patricia Burke; Jiaqi Huang; Jaye Viner; Jennifer McDevitt; Patricia LoRusso

Purpose: This phase I, multicenter, open-label, single-arm, dose-escalation, and dose-expansion study evaluated the safety, tolerability, and antitumor activity of MEDI-573 in adults with advanced solid tumors refractory to standard therapy or for which no standard therapy exists. Experimental Design: Patients received MEDI-573 in 1 of 5 cohorts (0.5, 1.5, 5, 10, or 15 mg/kg) dosed weekly or 1 of 2 cohorts (30 or 45 mg/kg) dosed every 3 weeks. Primary end points included the MEDI-573 safety profile, maximum tolerated dose (MTD), and optimal biologic dose (OBD). Secondary end points included MEDI-573 pharmacokinetics (PK), pharmacodynamics, immunogenicity, and antitumor activity. Results: In total, 43 patients (20 with urothelial cancer) received MEDI-573. No dose-limiting toxicities were identified, and only 1 patient experienced hyperglycemia related to treatment. Elevations in levels of insulin and/or growth hormone were not observed. Adverse events observed in >10% of patients included fatigue, anorexia, nausea, diarrhea, and anemia. PK evaluation demonstrated that levels of MEDI-573 increased with dose at all dose levels tested. At doses >5 mg/kg, circulating levels of insulin-like growth factor (IGF)-I and IGFII were fully suppressed. Of 39 patients evaluable for response, none experienced partial or complete response and 13 had stable disease as best response. Conclusions: The MTD of MEDI-573 was not reached. The OBD was 5 mg/kg weekly or 30 or 45 mg/kg every 3 weeks. MEDI-573 showed preliminary antitumor activity in a heavily pretreated population and had a favorable tolerability profile, with no notable perturbations in metabolic homeostasis. Clin Cancer Res; 20(18); 4747–57. ©2014 AACR.


Bioorganic & Medicinal Chemistry Letters | 2009

Synthesis and antitumor activities of 3-modified 2-methoxyestradiol analogs

Lita Suwandi; Gregory E. Agoston; Jamshed H. Shah; Arthur D. Hanson; Xiaoguo H. Zhan; Theresa M. LaVallee; Anthony M. Treston

The syntheses of 2-methoxyestradiol analogs with modifications at the 3-position are described. The analogs were assessed for their antiproliferative, antiangiogenic, and estrogenic activities. Several lead substituents were identified with similar or improved antitumor activities and reduced metabolic liability compared to 2-methoxyestradiol.


Cell Cycle | 2009

The hematopoietic-specific β1-tubulin is naturally resistant to 2-Methoxyestradiol and protects patients from drug-induced myelosuppression

Daniel Escuin; Patricia Burke; Grainne McMahon-Tobin; Todd Hembrough; Yuefang Wang; Ana A. Alcaraz; Luis Javier Leandro-García; Cristina Rodríguez-Rieiro; James P. Snyder; Theresa M. LaVallee; Paraskevi Giannakakou

Taxanes and other microtubule-targeting drugs (MTDs) represent one of the most effective classes of cancer chemotherapeutics. However, ultimately their utility is limited due to drug-induced myelosuppression. Here we identify 2-Methoxyestradiol (2ME2) as the first MTD able to specifically target tumor cells while sparing the bone marrow from dose-limiting, life-threatening toxicities. Following drug selection with 2ME2, epithelial cancer cells acquired a tubulin mutation at Vβ236I that impaired the 2ME2-tubulin interaction and rendered cells resistant to 2ME2. We further show that the hematopoietic-specific Hβ1 tubulin isotype naturally encodes Iβ236 and is insensitive to 2ME2. Systemic administration of 2ME2 in C57BL6 mice revealed that there was no effect on bone marrow microtubules, in contrast to the taxane or Vinca alkaloid induced toxicities. Similar results were obtained upon drug treatment of human bone marrow and CD34-positive stem/progenitor cells. Herein, we describe the first isotype-targeted chemotherapeutic, setting a new paradigm for the entire class of MTDs, and providing a model that could allow the design of new tubulin inhibitors devoid of myelosuppression. The ability to design a drug with minimal side-effects would significantly augment the chances of clinical success by allowing the use of a truly therapeutic dose rather than the maximally tolerated.


Bioorganic & Medicinal Chemistry | 2009

Synthesis of 2- and 17-substituted estrone analogs and their antiproliferative structure–activity relationships compared to 2-methoxyestradiol

Jamshed H. Shah; Gregory E. Agoston; Lita Suwandi; Kimberly A. Hunsucker; Victor Pribluda; Xiaoguo H. Zhan; Glenn M. Swartz; Theresa M. LaVallee; Anthony M. Treston

A novel series of 17-modified and 2,17-modified analogs of 2-methoxyestradiol (2ME2) were synthesized and characterized. These analogs were designed to retain or potentiate the biological activities of 2ME2 and have diminished metabolic liability. The analogs were evaluated for antiproliferative activity against MDA-MB-231 breast tumor cells, antiangiogenic activity in HUVEC, and estrogenic activity on MCF-7 cell proliferation. Several analogs were evaluated for metabolic stability in human liver microsomes and in vivo in a rat cassette dosing model. This study lead to several 17-modified analogs of 2ME2 that have similar or improved antiproliferative and antiangiogenic activity, lack estrogenic properties and have improved metabolic stability compared to 2ME2.

Collaboration


Dive into the Theresa M. LaVallee's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anthony M. Treston

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Glenn M. Swartz

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge