Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Theresa M. Lee is active.

Publication


Featured researches published by Theresa M. Lee.


Journal of Biological Rhythms | 2003

Mammalian Diurnality: Some Facts and Gaps

Laura Smale; Theresa M. Lee; Antonio A. Nunez

A major factor contributing to the evolution of mammals was their ability to be active during the night, a niche previously underused by terrestrial vertebrates. Diurnality subsequently reemerged multiple times in a variety of independent lineages. This paper reviews some recent data on circadian mechanisms in diurnal mammals and considers general themes that appear to be emerging from this work. Careful examination of behavioral studies suggests that although subtle differences may exist, the fundamental functions of the circadian system are the same, as seems to be the case with respect to the molecular mechanisms of the clock. This suggests that responses to signals originating in the clock must be different, either within the SCN or at its targets or downstream from them. Some features of the SCN vary from species to species, but none of these has been clearly associated with diurnality. The region immediately dorsal to the SCN, which receives substantial input from it, exhibits dramatically different rhythms in nocturnal lab rats and diurnal grass rats. This raises the possibility that it functions as a relay that transforms the signal emitted by the SCN and transmits different patterns to downstream targets in nocturnal and diurnal animals. Other direct targets of the SCN include neurons containing orexin and those containing gonadotropin-releasing hormone, and both of these populations of cells exhibit patterns of rhythmicity that are inverted in at least one diurnal compared to one nocturnal species. The patterns that emerge from the data on diurnality are discussed in terms of the implications they have for the evolution and neural substrates of a day-active way of life.


Hormones and Behavior | 2001

Central Vasopressin Administration Regulates the Onset of Facultative Paternal Behavior in Microtus pennsylvanicus (Meadow Voles)

Karen J. Parker; Theresa M. Lee

Pharmacological experiments have implicated a role for central arginine vasopressin (AVP) in regulating paternal behavior in monogamous prairie voles. Although nonmonogamous meadow voles exhibit appreciable paternal care when housed under winter, short day lengths (SD), no research has examined whether the same neurobiological systems are involved in regulating paternal behavior in a nonmonogamous species when it behaves paternally. The goal of these experiments was to determine whether central administration of AVP, but not cerebrospinal fluid (CSF), affected the suppression of pup-directed aggression and/or the onset of paternal behavior in meadow voles. Data from experiment 1 implicated a role for AVP in facilitating changes in male behavior: central administration of 1 ng of AVP (but not 3 ng or CSF) inhibited pup-directed aggression in previously pup-aggressive males, and 3 ng of AVP (but not 1 ng or CSF) induced paternal behavior in previously nonpaternal males. In contrast, AVP (1 and 3 ng) did not enhance paternal behavior in already paternal males. Experiment 2 tested the specificity of AVP. Previous research indicated that 24 h of unmated cohabitation with a female reliably induced paternal behavior in SD males. Hence, experiment 2 examined whether administration of a V(1a) AVP antagonist (AVPA), but not CSF, prior to 24 h of unmated cohabitation would block the onset of paternal behavior. Males that received CSF displayed paternal behavior faster and engaged in more investigatory and paternal behaviors than males that received AVPA. Thus, pharmacological experiments support the hypothesis that AVP likely regulates paternal behavior in both facultatively and consistently paternal vole species.


Hormones and Behavior | 2005

Prenatal stress differentially affects habituation of corticosterone responses to repeated stress in adult male and female rats

Seema Bhatnagar; Theresa M. Lee; Courtenay Vining

Environmental factors operating early in life have long-lasting and important consequences for the mental and physical health of the adult organism. In particular, prenatal exposure to stress represents one category of adverse early environmental events that are associated with development of depression and schizophrenia in adulthood. In the present studies, we examined whether prenatal stress alters the habituation of hypothalamic-pituitary-adrenal (HPA) activity that occurs with repeated stress exposure in adulthood. We compared corticosterone responses to the first vs. the eighth restraint, with lower responses to the eighth vs. the first considered evidence of habituation. In males, prenatal stress prevented the habituation of corticosterone responses to repeated restraint that was observed in non-prenatally stressed rats. Limited evidence of habituation was seen in either group of females and prenatally stressed females did not exhibit the enhanced corticosterone response during recovery from the eighth restraint that was seen in non-prenatally stressed females. Together, these results suggest a sex-specific interaction between prenatal stress and adult chronic stress on HPA activity.


Physiology & Behavior | 1995

Estrus- and steroid-induced changes in circadian rhythms in a diurnal rodent, Octodon degus.

Susan E. Labyak; Theresa M. Lee

Diurnal Octodon degus exhibited marked alterations in activity and temperature in conjunction with the 3 wk estrous cycle when housed in LD12:12 light cycle. On the day of estrus, mean daily activity increases 109%, mean core temperature rises .4 degree C, activity onset is advanced 2 h, and amplitudes of both rhythms decline compared with the 3 days prior to estrus. On the day following estrus, activity onset was delayed 4.9 h, and mean activity and core temperature fell below that of the preestrus period. Ovariectomy significantly reduced mean temperature (.98 degree C) but did not significantly alter mean activity, and eliminated cyclic effects of estrus. Estrogen replacement led to a nonsignificant elevation in mean activity and core temperature with no change in the phase angle of entrainment. Progesterone replacement significantly reduced mean core temperature and mean activity, while only the phase angle difference between temperature minimum and activity onset was significantly altered. Intact degus maintained in constant darkness displayed only transient fluctuations in activity onset and temperature minimum during and after estrus. Estrogen or progesterone treatment of ovariectomized, free-running degus altered mean temperature and activity levels, but did not influence tau. Changes in phase angle of entrainment during estrus are not the result of hormone effects on the circadian clock but likely reflect increased or decreased levels of activity.


Neuroscience | 1999

Suprachiasmatic nucleus and intergeniculate leaflet in the diurnal rodent Octodon degus: retinal projections and immunocytochemical characterization.

N. Goel; Theresa M. Lee; Laura Smale

The neural connections and neurotransmitter content of the suprachiasmatic nucleus and intergeniculate leaflet have been characterized thoroughly in only a few mammalian species, primarily nocturnal rodents. Few data are available about the neural circadian timing system in diurnal mammals, particularly those for which the formal characteristics of circadian rhythms have been investigated. This paper describes the circadian timing system in the diurnal rodent Octodon degus, a species that manifests robust circadian responses to photic and non-photic (social) zeitgebers. Specifically, this report details: (i) the distribution of six neurotransmitters commonly found in the suprachiasmatic nucleus and intergeniculate leaflet; (ii) the retinohypothalamic tract; (iii) the geniculohypothalamic tract; and (iv) retinogeniculate projections in O. degus. Using immunocytochemistry, neuropeptide Y-immunoreactive, serotonin-immunoreactive and [Met]enkephalin-immunoreactive fibers and terminals were detected in and around the suprachiasmatic nucleus; vasopressin-immunoreactive cell bodies were found in the dorsomedial and ventral suprachiasmatic nucleus; vasoactive intestinal polypeptide-immunoreactive cell bodies were located in the ventral suprachiasmatic nucleus; [Met]enkephalin-immunoreactive cells were located sparsely throughout the suprachiasmatic nucleus; and substance P-immunoreactive fibers and terminals were detected in the rostral suprachiasmatic nucleus and surrounding the nucleus throughout its rostrocaudal dimension. Neuropeptide Y-immunoreactive and [Met]enkephalin-immunoreactive cells were identified in the intergeniculate leaflet and ventral lateral geniculate nucleus, as were neuropeptide Y-immunoreactive, [Met]enkephalin-immunoreactive, serotonin-immunoreactive and substance P-immunoreactive fibers and terminals. The retinohypothalamic tract innervated both suprachiasmatic nuclei equally; in contrast, retinal innervation to the lateral geniculate nucleus, including the intergeniculate leaflet, was almost exclusively contralateral. Bilateral electrolytic lesions that destroyed the intergeniculate leaflet depleted the suprachiasmatic nucleus of virtually all neuropeptide Y- and [Met]enkephalin-stained fibers and terminals, whereas unilateral lesions reduced fiber and terminal staining by approximately half. Thus, [Met]enkephalin-immunoreactive and neuropeptide Y-immunoreactive cells project equally and bilaterally from the intergeniculate leaflet to the suprachiasmatic nucleus via the geniculohypothalamic tract in degus. This is the first report examining the neural circadian system in a diurnal rodent for which formal circadian properties have been described. The data indicate that the neural organization of the circadian timing system in degus resembles that of the most commonly studied nocturnal rodents, golden hamsters and rats. Armed with such data, one can ascertain differences in the functional organization of the circadian system between diurnal and nocturnal mammals.


Brain Research | 1999

Photic responses of suprachiasmatic area neurons in diurnal degus (Octodon degus) and nocturnal rats (Rattus norvegicus).

Yong-Yi Jiao; Theresa M. Lee; Benjamin Rusak

Photic sensitivity of cells in the suprachiasmatic nuclei (SCN), the principal pacemaker of the mammalian circadian system, has been documented in several species. In nocturnal rodents, the majority of photically responsive SCN cells are activated by retinal illumination. One report identified mostly photic suppressions among SCN cells in a diurnal rodent, studied under somewhat different conditions. We examined photic sensitivity of SCN cells in a predominantly diurnal rodent, the degu, studied in vivo under identical conditions to rats, and found that a large majority of photic SCN cells were suppressed by light. In both rats and degus, SCN cells were more responsive to light during the subjective night than during the subjective day. Light-responsive cells did not show a daily rhythm in baseline firing rates in either species, but rat SCN cells that did not respond to light were more active spontaneously during the subjective day. Light-unresponsive SCN cells in degus did not show a similar pattern. There are substantial differences in the neurophysiological activity and photic responsiveness of SCN cells in diurnal degus and nocturnal rats.


Physiology & Behavior | 1981

The maternal pheromone of the rat: Identity and functional significance

Howard Moltz; Theresa M. Lee

Abstract It is well known that the maternally-behaving female rat carries in her feces a pheromone that strongly attacts pre-weanling young. We addressed the question of what that pheromone might be and what adaptive benefits the young might gain from responding to it. We hypothesize and present supporting evidence that the pheromone is some transformation product of cholic acid synthesized in the cecum through the action of cecal bacteria. Moreover, we contend that in responding to the pheromone and in consuming maternal feces, the young ingest bile acids which both protect against necrotizing enterocolitis and aid in brain development.


Behavioral Neuroscience | 2001

Paternal behavior is associated with central neurohormone receptor binding patterns in meadow voles (Microtus pennsylvanicus).

Karen J. Parker; Lisa F. Kinney; Katie M. Phillips; Theresa M. Lee

Paternal and nonpaternal voles (microtus) have different arginine-vasopressin (AVP) and oxytocin (OT) receptor patterns in the extended amygdala, a neural pathway associated with parental behavior. Using receptor autoradiography, the authors examined whether AVP and OT receptor patterns were associated with facultative paternal behavior in either sexually and parentally inexperienced or experienced meadow voles (Microtus pennsylvanicus). Experienced, in contrast to inexperienced, males had less AVP binding in the lateral septum (LS), more AVP binding in the anterior olfactory nucleus (AON), and more OT binding in the AON, bed nucleus of the stria terminalis, LS, and lateral amygdala. Thus, specific AVP receptor patterns, which co-occur with paternal care in consistently paternal voles, also may be associated with paternal care (when present) in typically nonpaternal species. This study also demonstrated a possible relationship between OT receptor patterns and paternal state in male mammals.


Journal of Biological Rhythms | 1997

The Induction of Fos-Like Proteins in the Suprachiasmatic Nuclei and Intergeniculate Leaflet by Light Pulses in Degus (Octodon degus) and Rats

Kristine Krajnak; Lia Dickenson; Theresa M. Lee

In nocturnal rodents, exposure to light results in an increase in Fos expression in two regions that receive direct retinal input: the suprachiasmatic nuclei (SCN) of the hypothalamus and the intergeniculate leaflet (IGL) of the thalamus. The induction of Fos within the SCN of nocturnal rodents is phase dependent, with light presented during the subjective night increasing Fos expression and light presented during the subjective day having little effect. By contrast, Fos expression increases in the IGL when light is presented during the subjective day or night. It is unclear whether Fos is part of the pathway mediating light-induced phase shifts in diurnal rodents. In the present study, the ability of light to induce immunostaining for Fos in the SCN and IGL was compared in diurnal rodents, Octodon degus (degus), and nocturnal rats. Degus and rats were either maintained in constant darkness or exposed to a 1-h light pulse at circadian time (CT) 4 or 16. Degus exhibit robust phase shifts at each of those circadian hours, whereas rats demonstrate phase shifts only at CT 16. In degus, exposure to a 1-h light pulse at CT 16 resulted in an increase in the number of Fos-immunopositive (Fos+) cells in the ventrolateral SCN. By contrast, a 1-h light pulse at CT 4 resulted in a decrease in the number of Fos+ cells in the dorsomedial portion of the SCN. In rats, a light pulse presented at CT 16 resulted in an increase in Fos+ cells throughout the SCN, and a pulse at CT 4 had no effect on Fos staining. Both degus and rats showed increases in Fos expression in the IGL after light exposure at CTs 4 and 16. The authors conclude that light pulses presented at times that produce phase shifts in activity rhythms also alter Fos expression in the SCN and IGL of degus. Although these effects of light exposure on Fos expression are not identical in diurnal and nocturnal rodents, it is likely that Fos and other immediate early genes are part of the pathway mediating the effects of light in both diurnal and nocturnal rodents.


Frontiers in Neuroendocrinology | 2012

The neuroendocrine control of the circadian system: Adolescent chronotype

Megan H. Hagenauer; Theresa M. Lee

Scientists, public health and school officials are paying growing attention to the mechanism underlying the delayed sleep patterns common in human adolescents. Data suggest that a propensity towards evening chronotype develops during puberty, and may be caused by developmental alterations in internal daily timekeeping. New support for this theory has emerged from recent studies which show that pubertal changes in chronotype occur in many laboratory species similar to human adolescents. Using these species as models, we find that pubertal changes in chronotype differ by sex, are internally generated, and driven by reproductive hormones. These chronotype changes are accompanied by alterations in the fundamental properties of the circadian timekeeping system, including endogenous rhythm period and sensitivity to environmental time cues. After comparing the developmental progression of chronotype in different species, we propose a theory regarding the ecological relevance of adolescent chronotype, and provide suggestions for improving the sleep of human adolescents.

Collaboration


Dive into the Theresa M. Lee's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Namni Goel

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

Laura Smale

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge