Theresa S. Talley
University of California, Davis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Theresa S. Talley.
Biological Invasions | 2001
Theresa S. Talley; Lisa A. Levin
Invasive grasses have recently altered salt marsh ecosystems throughout the northern hemisphere. On the eastern seaboard of the USA, Phragmites australis has invaded both brackish and salt marsh habitats. Phragmites australis influence on sediments and fauna was investigated along a salinity and invasion-age gradient in marshes of the lower Connecticut River estuary. Typical salinities were about 19–24 ppt in Site I, 9–10 ppt in Site II and 5–7 ppt in Site III. Strongest effects were evident in the least saline settings (II and III) where Phragmites has been present the longest and exists in monoculture. Limited influence was evident in the most saline region (I) where Phragmites and native salt marsh plants co-occur. The vegetation within Phragmites stands in tidal regions of the Connecticut River generally exhibits taller, but less dense shoots, higher above-ground biomass, and lower below-ground biomass than does the un-invaded marsh flora. There were lower sediment organic content, greater litter accumulation and higher sediment chlorophyll a concentrations in Phragmites- invaded than un-invaded marsh habitat. Epifaunal gastropods (Succinea wilsoni and Stagnicola catascopium) were less abundant in habitats where Phragmites had invaded than in un-invaded marsh habitat. Macro-infaunal densities were lower in the Phragmites-invaded than un-invaded habitats at the two least saline sites (II and III). Phragmites stands supported more podurid insects, sabellid polychaetes, and peracarid crustaceans, fewer arachnids, midges, tubificid and enchytraeid oligochaetes, and greater habitat-wide taxon richness as measured by rarefaction, than did the un-invaded stands. The magnitude and significance of the compositional differences varied with season and with site; differences were generally greatest at the oldest, least saline sites (II and III) and during May, when faunal densities were higher than in September. However, experimental design and the 1-year study period precluded clear separation of salinity, age, and seasonal effects. Although structural effects of Phragmites on salt marsh faunas are evident, further investigation is required to determine the consequences of these effects for ecosystem function.
Estuaries | 1998
Lisa A. Levin; Theresa S. Talley; Judi Hewitt
Environmental attributes (vegetation and sediment properties) of and macrofaunal community structure in sediments of five southern California Spartina foliosa marshes (San Diego Bay, Mission Bay, Upper Newport Bay, Bolsa Chica Lagoon, and Anaheim Bay) were examined during October 1994. Macrofaunal densities in Pacific S. foliosa marshes (avg. 122,268 indiv. m2>300 μm) were 3 to 10 times higher than observed in Atlantic S. alterniflora and S. anglica marshes. The macrofauna of S. foliosa marshes was composed mainly of enchytraeid, naidid, and tubificid oligochaetes (66%), with the enchytraeids dominant at all sites except Bolsa Chica Lagoon. Polychaetes, insects, and peracarid crustaceans accounted for most of the remaining fauna. Multivariate analyses indicated greatest faunal similarity between the two southernmost marshes (Mission Bay and San Diego Bay), and between Anaheim and Newport Bay marshes, with Bolsa Chica Lagoon exhibiting a distinct assemblage. There were strong positive associations of faunal abundance and composition with percent organic matter and percent open area, and negative associations with percent sand and dry weight of algae. For the vegetated marsh in Mission Bay, faunal comparisons were made with an adjacent mudflat and with a S. alterniflora marsh in North Carolina, USA. The unvegetated mudflat exhibited similar macrofaunal densities but higher species richness than the adjacent Spartina marsh. The macrofaunal assemblage of the Mission Bay S. foliosa marsh differed from that of the Atlantic S. alterniflora marsh and the Pacific mudflat in having a greater proportion of oligochaetes, especially Enchytraeidae, and fewer polychaetes. This study represents the first published description that we are aware of for macrofauna in S. foliosa vegetated marsh sediments. The findings document faunal variation among southern California embayments and suggest that differences in macrobenthic community structure occur between marsh and mudflat habitat as well as between east and west coast Spartina marshes. Observed differences may have significant implications for wetland conservation and restoration efforts.
Ecological Applications | 2002
Lisa A. Levin; Theresa S. Talley
Ecosystem recovery following wetland restoration offers exceptional opportunities to study system structure, function, and successional processes in salt marshes. This study used observations of natural variation and large-scale manipulative experiments to test the influence of vascular vegetation and soil organic matter on the rate and trajectory of macrofaunal recovery in a southern California created salt marsh, the Crown Point Mitigation Site. During the first three years following marsh establishment, macrofaunal density and species richness recovered rapidly within the Spartina foliosa (cordgrass) zone; densities in the created marsh were 50% of those in the natural marsh after 16 mo and 97% after 28 mo. However, the early successional assemblage had a lower proportion of tubificid and enchytraeid oligochaetes, and a higher proportion of chironomids and other insect larvae than did the mature natural marsh. Most of the colonizers arrived by rafting on sea grass and algae rather than by larval dispersal. Initial planting of S. foliosa had no influence on macrofaunal recovery, perhaps because of variable transplant survival. However, subsequently, both positive and negative correlations were observed between densities of some macrofaunal taxa and shoot densities of S. foliosa or Salicornia spp. (pickleweed). Salinity and measures of soil organics (belowground biomass, combustible organic matter, and chlorophyll a) also were correlated with macrofaunal densities and taxon richness. Of four added soil amendments (kelp, alfalfa, peat, and Milorganite), Milorganite (a sewage product) and kelp both promoted macrofaunal colonization during year 1, but effects were short lived. The most significant sources of heterogeneity in the recovering marsh were associated with site history and climate variation. Faunal recovery was most rapid in highly localized, organic-rich marsh sediments that were remnants of the historical wetland. Elevated sea level during the 1998 El Nino corresponded with similarity of macrofaunal communities in the created and natural marshes. The large spatial scale and multi-year duration of this study revealed that natural sources of spatial and temporal heterogeneity may exert stronger influence on faunal succession in California wetlands than manipulation of vegetation or soil properties.
Archive | 2002
Lisa A. Evin; Theresa S. Talley
Sediment-dwelling fauna are a ubiquitous component of salt marshes yet we have limited understanding of their roles in marsh functioning and of the environmental conditions that control their distributions and abundances. This paper examines the influence of vegetation (presence, type, density, and biomass) and other environmental variables (marsh age, sediment and porewater properties, elevation, flow, oxygen, and biogenic structures) on salt marsh macrofauna and meiofauna. We review studies from a variety of geographical locations and include new information from systems with adjacent natural and restored sites in southern California. The influence of environmental factors on faunal assemblages varies with marsh system, factor intensity or concentration, taxon studied, and with other interacting factors present. We hypothesize a hierarchy of environmental variables in which abiotic properties such as marsh age, elevation and salinity act over large space and time scales, and are most likely to influence the presence or absence of species. Sediment properties (organic matter and particle size) and vegetation presence or type act on intermediate scales affecting macrofaunal abundance and composition. Plant biomass, culms and biogenic structures generated by fauna are patchy and act on small scales, often interacting with flow, to affect distribution and abundance patterns. Resolution of these processes in salt marshes should improve our understanding of controls on invertebrate communities and will ultimately aid the conservation and restoration of salt marsh habitat.
Journal of Experimental Marine Biology and Ecology | 2003
Judi E. Hewitt; Vonda J. Cummings; J.I. Ellis; Greig A. Funnell; Alf Norkko; Theresa S. Talley; Simon F. Thrush
Elevated rates of sediment run-off, as a result of changes in land-use and climate, are a significant threat to marine coastal communities, with a potential to cause broad-scale, long-term alteration of habitats. Individual sedimentation events can smother estuarine flats with terrigenous sediments, creating a significant disturbance to local benthic communities. Variations in the degree to which a habitat is altered, the rate at which mixing occurs, and species-specific dispersal and responses to the altered habitat, suggest that colonisation of terrestrial sediment depositions will vary with location, both between and within estuaries. This study was designed to explore the effect that variations in wave-induced hydrodynamics would have on long-term colonisation of terrestrial sediment depositions on intertidal flats. Sites for the experimental deposition of terrestrial sediment were located along a gradient in wave exposure, with only limited variation in immersion times (30 min) and ambient sediment particle sizes (predominantly fine sand). Over 20 months, periodic measurements were made of factors predicted to affect colonisation: the sediment characteristics of the deposited sediment; local-scale wave climate; bioturbation of the deposited sediment; and local populations of benthic invertebrates. Neither opportunistic use of the new resource, progressive recovery or facilitation by colonising macrofauna was observed. Little vertical mixing of the deposited and existing sediment by either waves or bioturbators occurred; instead bedload transport was the dominant process. Local differences in hydrodynamic conditions and macrobenthic communities resulted in site-specific colonisation of the experimental plots. The strength and duration of the macrofaunal response to deposited sediment observed in this study suggest that chronic small-scale (ms) patchy deposition of terrestrial sediment in the intertidal marine environment has a strong potential to alter both habitats and communities.
Ecology | 2007
Theresa S. Talley
Patches, gradients, and hierarchies are three common organizational frameworks for assessing the effects of spatial heterogeneity on species distributions. Since these frameworks are often chosen a priori, without knowledge of study systems, they may not correspond to the empirical heterogeneity present and may result in partial or erroneous conclusions about the forces structuring species distributions. I tested the consequences of choosing particular frameworks and whether patch heterogeneity structured patchily distributed populations of the valley elderberry longhorn beetle (Desmocerus californicus dimorphus) along four rivers in Californias Central Valley (USA). A comparison of the three approaches revealed that each led to incomplete conclusions about controls on the beetles distribution and populations. Patch analysis revealed weak effects of patch size and quality, and high unexplained variance, which likely reveals large amounts of stochasticity since replication was high. The patch analysis therefore concluded that distributions consistent with patch dynamic structures like classic metapopulation, source-sink, and mainland-island models existed in the different rivers. Conversely, gradient analyses revealed a gradient-distribution pattern responding to continuous and often large-scale variables, such as host-plant age or size, water availability, and the presence of an invasive leguminous tree; again most variance in beetle occurrence remained unexplained. Hierarchical analysis identified the natural spatial patterns of the system but gave no indication of causal processes. The combination of all three approaches explained the maximum variance in beetle occurrence, through inclusion of a comprehensive list of explanatory variables, multiple spatial scales, various types of heterogeneity, and a focus on the scales at which beetle-environment interactions were strongest. Surprisingly, these results still supported the notion that the beetle exists as a metapopulation, a structure thought to be rare because it ignores habitat quality and landscape conditions. These analyses exemplify the simultaneous importance of local patch attributes and broad-scale and/or gradient variables that are commonly overlooked in patch studies. Importantly, some patch attributes acted over inter-patch scales, affecting the perception of patch distances and distributional extents. Only through the integration of frameworks was I able to decipher the systems complexity and see that all three types of heterogeneity were acting in the system, sometimes over unexpected scales.
Estuaries | 2000
Theresa S. Talley; Paul K. Dayton; Silvia E. Ibarra-Obando
Several tidal flats in both Estero de Punta Banda and Bahia de San Quintín, Baja California, and one in Mission Bay, southern California, were sampled for macrofaunal properties (taxonomic composition, density, species richness, and functional groups for animals ≥0.3 mm) and associated environmental variables (sediment properties, salinity, plant belowground biomass, and cover ofZostera marina) in order to establish a benchmark data set for these areas. The grouping of macrofauna into higher taxonomic or functional groups for these comparisons reduced variability and revealed stronger relationships. Each estuary had a fairly distinct macrofaunal assemblage, with that of Estero de Punta Banda being different from Bahia de San Quintín and Mission Bay primarily due to dominance by a capitellid polychaete, lower proportions of surface deposit feeders, and higher proportions of fauna with a planktonic stage. The flats in Mission Bay and Bahia de San Quintín were dominated by peracarid crustaceans, oligochaetes and polychaetes and had higher proportions of direct developers and macrofauna with mobile adult stages than did Estero de Punta Banda. There was an overlap of the environmental characteristics among estuaries, with more variability of sediment and vegetation properties within than among estuaries. Within Bahia de San Quintín, there was an oceanic to back-bay distribution gradient of macrofauna that was similar to that found in estuaries in wetter climates, despite the lack of a salinity gradient in San Quintín. A decoupling of the benthos and the assumed anthropogenic stresses was observed with the degraded site, Mission Bay, being most similar to the relatively pristine Bahia de San Quintín. Selection of reference sites and sampling variables should be made cautiously because effects of disturbance factors on the benthos may be site-dependent, scale-dependent, or negligible.
Theoretical Ecology Series | 2007
Theresa S. Talley; Jeffrey A. Crooks
This chapter examines the engineering activities and their consequences for three types of marine isopods, Sphaeroma quoianum , S. terebrans , and Limnoria spp ., on the biogenic marine habitats formed by marsh plants, mangroves, and kelp (respectively). The chapter also focuses on the case of S. quoianum and compares this example with the two other taxa. Each of these isopods has been anthropogenically spread around the world. Although these species represent conservation concerns, they also provide an opportunity for ecological insight afforded by the study of biological invasions. These isopods often perform their bioerosive activities in multiengineer systems, with the plants and kelp creating biogenic structure and the isopods removing it. Sometimes the activities may act directly on the physical environment, such as S. quoianum burrowing into unvegetated banks. However, the actual mechanisms by which they cause this loss of structure differ.
PLOS ONE | 2012
Theresa S. Talley; Kim-Chi Nguyen; Anthony Nguyen
Despite the iconic association of palms with semi-arid regions, most are introduced and can invade natural areas. Along the San Diego River (San Diego, California, USA), the introduced Canary Island date palm (Phoenix canariensis) forms dense patches among native riparian shrubs like arroyo willow (Salix lasiolepis). The structural differences between the palm and native shrubs are visually obvious, but little is known about palm’s effects on the ecosystem. We tested for the effects of the palm on a riparian invertebrate community in June 2011 by comparing the faunal and environmental variables associated with palm and willow canopies, trunks and ground beneath each species. The palm invertebrate community had lower abundance and diversity, fewer taxa feeding on the host (e.g., specialized hemipterans), and more taxa likely using only the plant’s physical structure (e.g., web-builders, oak moths, willow hemipterans). There were no observed effects on the ground-dwelling fauna. Faunal differences were due to the physical and trophic changes associated with palm presence, namely increased canopy density, unpalatable leaves, trunk rugosity, and litter accumulations. Palm presence and resulting community shifts may have further ecosystem-level effects through alteration of physical properties, food, and structural resources. These results were consistent with a recent study of invasive palm effects on desert spring arthropods, illustrating that effects may be relatively generalizable. Since spread of the palm is largely localized, but effects are dramatic where it does occur, we recommend combining our results with several further investigations in order to prioritize management decisions.
PLOS ONE | 2015
Drew M. Talley; Theresa S. Talley; Alexander Blanco
Coastal ecosystem modifications have contributed to the spread of introduced species through alterations of historic disturbance regimes and resource availability, and increased propagule pressure. Frequency of occurrence of the Manila clam (Venerupis phillipinarum, Veneridae) in Southern California estuaries has increased from absent or sparse to common since the mid-1990s. Potential invasion vectors include seafood sales and aquaculture, and spread from established northern populations over decades. The clam’s post-settlement habitat preferences are, however, uncertain in this region. Our project aimed to identify factors associated with established patches of the clam within a bay toward the southern end of this introduced range. During summer 2013, we sampled 10 tidal flat sites in Mission Bay, San Diego; each containing an area with and without hard structure (e.g., riprap, boulders). We measured likely environmental influences (e.g., sediment variables, distance to ocean). Manila clam densities across the bay were most strongly associated with site, where highest densities were located in the northern and/or back halves of the bay; and weakly correlated with lower porewater salinities. Within sites, Manila clam density was enhanced in the presence of hard structure in most sites. Prevailing currents and salinity regimes likely contribute to bay wide distributions, while hard structures may provide suitable microhabitats (refuge from predators and physical stress) and larval entrapment within sites. Results provide insights into decisions about future shoreline management efforts. Finally, we identify directions for future study to better understand and therefore predict patterns of establishment of the Manila clam in the southern portion of its introduced range.