Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Therese Faye is active.

Publication


Featured researches published by Therese Faye.


Applied and Environmental Microbiology | 2000

Biochemical and Genetic Characterization of Propionicin T1, a New Bacteriocin from Propionibacterium thoenii

Therese Faye; Thor Langsrud; Ingolf F. Nes; Helge Holo

ABSTRACT A collection of propionibacteria was screened for bacteriocin production. A new bacteriocin named propionicin T1 was isolated from two strains of Propionibacterium thoenii. This bacteriocin shows no sequence similarity to other bacteriocins. Propionicin T1 was active against all strains of Propionibacterium acidipropionici, Propionibacterium thoenii, andPropionibacterium jensenii tested and also againstLactobacillus sake NCDO 2714 but showed no activity againstPropionibacterium freudenreichii. The bacteriocin was purified, and the N-terminal part of the peptide was determined with amino acid sequencing. The corresponding gene pctA was sequenced, and this revealed that propionicin T1 is produced as a prebacteriocin of 96 amino acids with a typical sec leader, which is processed to give a mature bacteriocin of 65 amino acids. An open reading frame encoding a protein of 424 amino acids was found 68 nucleotides downstream the stop codon of pctA. The N-terminal part of this putative protein shows strong similarity with the ATP-binding cassette of prokaryotic and eukaryotic ABC transporters, and this protein may be involved in self-protection against propionicin T1. Propionicin T1 is the first bacteriocin from propionibacteria that has been isolated and further characterized at the molecular level.


Journal of Dairy Science | 2012

Survival of lactic acid bacteria from fermented milks in an in vitro digestion model exploiting sequential incubation in human gastric and duodenum juice

Therese Faye; Alessio Tamburello; Gerd E. Vegarud; Siv Skeie

In the present study, the survival of 9 lactic acid bacteria (5 Lactococcus strains, 3 Lactobacillus strains, and 1 strain of Enterococcus hirae), was investigated in vitro under conditions similar to human digestion using human gastric and duodenal juices. The tolerance of the bacteria was also tested with traditional methods using acidic conditions and bile salts. The strains were subjected to a model digestive system comprising sequential incubation in human gastric and duodenal juices, in a 2-step digestion assay at 37°C, simulating the human upper gastrointestinal tract with human gastric juices at pH 2.5 and human duodenal juices at pH 7. The bacterial strains were tested either as washed cells from culture media or in fermented milk. The initial in vitro testing in acid and bile salts showed that Lactobacillus strains and the E. hirae strain displayed a significantly higher acid tolerance than the lactococci. The lactobacilli and the Enterococcus numbers increased, whereas the lactococci decreased at least 1 log during the bile salt treatment. The Lactobacillus strains showed the highest survival rate in the model digestive system when washed bacterial cultures were used with a minor log reduction, whereas the lactococci numbers were reduced by at least log 4. However, when using fermented milks in the model digestion system it was demonstrated that the Enterococcus strain and 2 strains of Lactococcus lactis ssp. cremoris benefited significantly from the presence of the fermented milk as food matrix, with log numbers >log 7 and 5, respectively, after digestion of the fermented milk. The analyses reported comprise a comprehensive in vitro testing regimen suitable for evaluation of the survival of candidate probiotic bacteria in human digestion as an initial prescreen to clinical trials.


Journal of Bacteriology | 2002

An antimicrobial peptide is produced by extracellular processing of a protein from Propionibacterium jensenii.

Therese Faye; Dag Anders Brede; Thor Langsrud; Ingolf F. Nes; Helge Holo

A protease-activated antimicrobial peptide (PAMP) and its inactive precursor were purified from the culture supernatant of Propionibacterium jensenii LMG 3032 and characterized at the molecular level. PAMP is a 64-amino-acid cationic peptide of 6,383 Da with physicochemical features similar to those of bacteriocins from gram-positive bacteria. This peptide displayed bactericidal activity against several propionibacteria and lactobacilli. DNA sequencing indicated that the PAMP-encoding gene (pamA) is translated as a proprotein of 198 amino acids with an N-terminal signal peptide of 27 amino acids and that PAMP constitutes the C-terminal part of this precursor. The amino acid sequence of pro-PAMP showed no similarity to those of other known proteins. By using activity tests and mass spectrometry, we showed that PAMP was formed upon protease treatment of the precursor protein. The propionibacteria produced the PAMP precursor constitutively during growth up to a level of approximately 4 mg/liter, but the producing bacteria were unable to activate the precursor. The requirement for an external protease represents a novel strategy for generating antimicrobial peptides.


Applied and Environmental Microbiology | 2005

Heterologous Production of Antimicrobial Peptides in Propionibacterium freudenreichii

Dag Anders Brede; Therese Faye; Melanie Patricia Stierli; Gottfried Dasen; Anita Theiler; Ingolf F. Nes; Leo Meile; Helge Holo

ABSTRACT Heterologous bacteriocin production in Propionibacterium freudenreichii is described. We developed an efficient system for DNA shuttling between Escherichia coli and P. freudenreichii using vector pAMT1. It is based on the P. freudenreichii rolling-circle replicating plasmid pLME108 and carries the cml(A)/cmx(A) chloramphenicol resistance marker. Introduction of the propionicin T1 structural gene (pctA) into pAMT1 under the control of the constitutive promoter (P4) yielded bacteriocin in amounts equal to those of the wild-type producer Propionibacterium thoenii 419. The P. freudenreichii clone showed propionicin T1 activity in coculture, killing 90% of sensitive bacteria within 48 h. The pamA gene from P. thoenii 419 encoding the protease-activated antimicrobial peptide (PAMP) was cloned and expressed in P. freudenreichii, resulting in secretion of the pro-PAMP protein. Like in the wild type, PAMP activation was dependent on externally added protease. Secretion of the antimicrobial peptide was obtained from a clone in which the pamA signal peptide and PAMP were fused in frame. The promoter region of pamA was identified by fusion of putative promoter fragments to the coding sequence of the pctA gene. The P4 and Ppamp promoters directed constitutive gene expression, and activity of both promoters was enhanced by elements upstream of the promoter core region.


Applied and Environmental Microbiology | 2004

Prevalence of the genes encoding propionicin T1 and protease-activated antimicrobial peptide and their expression in classical propionibacteria.

Therese Faye; Dag Anders Brede; Thor Langsrud; Ingolf F. Nes; Helge Holo

ABSTRACT The purpose of this study was to investigate the frequency of production of the bacteriocin propionicin T1 and the protease-activated antimicrobial peptide (PAMP) and their corresponding genes in 64 isolates of classical propionibacteria. This study revealed that these genes are widespread in Propionibacterium jensenii and Propionibacterium thoenii but absent from the remaining species of classical propionibacteria that were studied. The pro-PAMP-encoding gene (pamA) was found in 63% of the P. jensenii strains and 61% of the P. thoenii strains, and all of these strains displayed PAMP activity. The propionicin T1-encoding gene (pctA) was present in 89% of the P. thoenii strains and 54% of the P. jensenii strains. All P. thoenii strains containing the pctA gene exhibited antimicrobial activity corresponding to propionicin T1 activity, whereas only 38% of the pctA-containing P. jensenii strains displayed this activity. Sequencing of the pctA genes revealed the existence of two allelic variants that differed in a single nucleotide in six strains of P. jensenii; in these strains the glycine at position 55 of propionicin T1 was replaced by an aspartate residue (A variant). No strains harboring the A variant showed any antimicrobial activity against propionicin T1-sensitive bacteria. An open reading frame (orf2) located immediately downstream from the pctA gene was absent in three strains containing the G variant of propionicin T1. Two of these strains showed low antimicrobial activity, while the third strain showed no antimicrobial activity at all. The protein encoded by orf2 showed strong homology to ABC transporters, and it has been proposed previously that this protein is involved in the producer immunity against propionicin T1. The limited antimicrobial activity exhibited by the strains lacking orf2 further suggests that this putative ABC transporter plays an important role in propionicin T1 activity.


Applied Microbiology and Biotechnology | 2011

The unconventional antimicrobial peptides of the classical propionibacteria

Therese Faye; Helge Holo; Thor Langsrud; Ingolf F. Nes; Dag Anders Brede

The classical propionibacteria produce genetically unique antimicrobial peptides, whose biological activities are without equivalents, and to which there are no homologous sequences in public databases. In this review, we summarize the genetics, biochemistry, biosynthesis, and biological activities of three extensively studied antimicrobial peptides from propionibacteria. The propionicin T1 peptide constitutes a bona fide example of an unmodified general secretory pathway (sec)-dependent bacteriocin, which is bactericidal towards all tested species of propionibacteria except Propionibacterium freudenreichii. The PAMP antimicrobial peptide represents a novel concept within bacterial antagonism, where an inactive precursor protein is secreted in large amounts, and which activation appears to rely on subsequent processing by proteases in its resident milieu. Propionicin F is a negatively charged bacteriocin that displays an intraspecies bactericidal inhibition spectrum. The biosynthesis of propionicin F appears to proceed through a series of unusual events requiring both N- and C-terminal processing of a precursor protein, which probably requires the radical SAM superfamily enzyme PcfB.


Applied and Environmental Microbiology | 2007

Identification of the propionicin F bacteriocin immunity gene (pcfI) and development of a food-grade cloning system for Propionibacterium freudenreichii.

Dag Anders Brede; Sheba Lothe; Zhian Salehian; Therese Faye; Ingolf F. Nes

ABSTRACT This report describes the first functional analysis of a bacteriocin immunity gene from Propionibacterium freudenreichii and its use as a selection marker for food-grade cloning. Cloning of the pcfI gene (previously orf5 [located as part of the pcfABC propionicin F operon]) rendered the sensitive host 1,000-fold more tolerant to the propionicin F bacteriocin. The physiochemical properties of the 127-residue large PcfI protein resemble those of membrane-bound immunity proteins from bacteriocin systems found in lactic acid bacteria. The high level of immunity conferred by pcfI allowed its use as a selection marker for plasmid transformation in P. freudenreichii. Electroporation of P. freudenreichii IFO12426 by use of the pcfI expression plasmid pSL102 and propionicin F selection (200 bacteriocin units/ml) yielded 107 transformants/μg DNA. The 2.7-kb P. freudenreichii food-grade cloning vector pSL104 consists of the pLME108 replicon, a multiple cloning site, and pcfI expressed from the constitutive PpampS promoter for selection. The pSL104 vector efficiently facilitated cloning of the propionicin T1 bacteriocin in P. freudenreichii. High-level propionicin T1 production (640 BU/ml) was obtained with the IFO12426 strain, and the food-grade propionicin T1 expression plasmid pSL106 was maintained by ∼91% of the cells over 25 generations in the absence of selection. To the best of our knowledge this is the first report of an efficient cloning system that facilitates the generation of food-grade recombinant P. freudenreichii strains.


Applied and Environmental Microbiology | 2008

Construction of a Reporter Vector System for In Vivo Analysis of Promoter Activity in Propionibacterium freudenreichii

Therese Faye; Anita Åsebø; Zhian Salehian; Thor Langsrud; Ingolf F. Nes; Dag Anders Brede

ABSTRACT A β-galactosidase reporter system for the analysis of promoter elements in Propionibacterium freudenreichii was designed. The pTD210 in vivo reporter vector was constructed using a promoterless lacZ gene from Bifidobacterium longum cloned into the pAMT1 plasmid. The utility of the pTD210 reporter vector was demonstrated by an investigation of six predicted promoters in P. freudenreichii. The system produced accurate and reproducible measurements that facilitated both promoter identification and the quantification of promoter activities.


Lait | 2002

Bacteriocins of propionic acid bacteria

Helge Holo; Therese Faye; Dag Anders Brede; Trine Nilsen; Inger Ødegård; Thor Langsrud; Johanne Brendehaug; Ingolf F. Nes


Archive | 2002

Biochemical and genetic characterization of propionicin T1

Therese Faye; Helge Holo; Thor Langsrud; Ingolf F. Nes

Collaboration


Dive into the Therese Faye's collaboration.

Top Co-Authors

Avatar

Ingolf F. Nes

Norwegian Food Research Institute

View shared research outputs
Top Co-Authors

Avatar

Thor Langsrud

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Dag Anders Brede

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Helge Holo

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

Zhian Salehian

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Helge Holo

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

Alessio Tamburello

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Gerd E. Vegarud

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Johanne Brendehaug

Norwegian Food Research Institute

View shared research outputs
Top Co-Authors

Avatar

Siv Skeie

Norwegian University of Life Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge