Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Therese M. Donovan is active.

Publication


Featured researches published by Therese M. Donovan.


Journal of Wildlife Management | 2007

Comparing Scat Detection Dogs, Cameras, and Hair Snares for Surveying Carnivores

Robert A. Long; Therese M. Donovan; Paula MacKay; William J. Zielinski; Jeffrey S. Buzas

Abstract Carnivores typically require large areas of habitat, exist at low natural densities, and exhibit elusive behavior—characteristics that render them difficult to study. Noninvasive survey methods increasingly provide means to collect extensive data on carnivore occupancy, distribution, and abundance. During the summers of 2003–2004, we compared the abilities of scat detection dogs, remote cameras, and hair snares to detect black bears (Ursus americanus), fishers (Martes pennanti), and bobcats (Lynx rufus) at 168 sites throughout Vermont. All 3 methods detected black bears; neither fishers nor bobcats were detected by hair snares. Scat detection dogs yielded the highest raw detection rate and probability of detection (given presence) for each of the target species, as well as the greatest number of unique detections (i.e., occasions when only one method detected the target species). We estimated that the mean probability of detecting the target species during a single visit to a site with a detection dog was 0.87 for black bears, 0.84 for fishers, and 0.27 for bobcats. Although the cost of surveying with detection dogs was higher than that of remote cameras or hair snares, the efficiency of this method rendered it the most cost-effective survey method.


Journal of Wildlife Management | 2006

Patch Size and Landscape Effects on Density and Nesting Success of Grassland Birds

Maiken Winter; Douglas H. Johnson; Jill A. Shaffer; Therese M. Donovan; W. Daniel Svedarsky

Abstract Current management recommendations for grassland birds in North America emphasize providing large patches of grassland habitat within landscapes that have few forest or shrubland areas. These Bird Conservation Areas are being proposed under the assumption that large patches of habitat in treeless landscapes will maintain viable populations of grassland birds. This assumption requires that patch size and landscape features affect density and nesting success of grassland birds, and that these effects are consistent among years and regions and across focal species. However, these assumptions have not yet been validated for grassland birds, and the relative importance of local vegetation structure, patch size, and landscape composition on grassland bird populations is not well known. In addition, factors influencing grassland bird nesting success have been investigated mostly in small-scale and short-duration studies. To develop management guidelines for grassland birds, we tested the spatial and temporal repeatability of the influence of patch size and landscape composition on density and nesting success of 3 grassland passerines, after controlling for local-scale vegetation structure, climate, and—when analyzing nest success—bird density. We conducted our study during 4 years (1998–2001) in 44 study plots that were set up in 3 regions of the northern tallgrass prairie in Minnesota and North Dakota, USA. In these study plots we measured density and nesting success of clay-colored sparrows (Spizella pallida), Savannah sparrows (Passerculus sandwichensis), and bobolinks (Dolichonyx oryzivorus). Statistical models indicated that density was influenced by patch size, landscape, region, and local vegetation structure more so than by local vegetation structure alone. Both magnitude and direction of the response of density to patch size varied among regions, years, and species. In contrast, the direction of landscape effects was consistent among regions, years, and between Savannah sparrows and bobolinks. In each species, this landscape effect was independent of patch size. Nesting success was not clearly influenced by patch size or landscape composition, and none of the factors that influenced avian density also influenced nesting success in any of the 3 species. General statements on “optimal habitat” for grassland birds should therefore be viewed cautiously. Instead, long-term studies in different regions as well as a deeper understanding of the local system are needed to determine which factors are most important for grassland birds in a particular area.


Ecological Applications | 2012

Carbon storage, timber production, and biodiversity: comparing ecosystem services with multi-criteria decision analysis

W. Scott Schwenk; Therese M. Donovan; William S. Keeton; Jared S. Nunery

Increasingly, land managers seek ways to manage forests for multiple ecosystem services and functions, yet considerable challenges exist in comparing disparate services and balancing trade-offs among them. We applied multi-criteria decision analysis (MCDA) and forest simulation models to simultaneously consider three objectives: (1) storing carbon, (2) producing timber and wood products, and (3) sustaining biodiversity. We used the Forest Vegetation Simulator (FVS) applied to 42 northern hardwood sites to simulate forest development over 100 years and to estimate carbon storage and timber production. We estimated biodiversity implications with occupancy models for 51 terrestrial bird species that were linked to FVS outputs. We simulated four alternative management prescriptions that spanned a range of harvesting intensities and forest structure retention. We found that silvicultural approaches emphasizing less frequent harvesting and greater structural retention could be expected to achieve the greatest net carbon storage but also produce less timber. More intensive prescriptions would enhance biodiversity because positive responses of early successional species exceeded negative responses of late successional species within the heavily forested study area. The combinations of weights assigned to objectives had a large influence on which prescriptions were scored as optimal. Overall, we found that a diversity of silvicultural approaches is likely to be preferable to any single approach, emphasizing the need for landscape-scale management to provide a full range of ecosystem goods and services. Our analytical framework that combined MCDA with forest simulation modeling was a powerful tool in understanding trade-offs among management objectives and how they can be simultaneously accommodated.


Ecological Applications | 2006

Grassland Songbirds In A Dynamic Management Landscape: Behavioral Responses And Management Strategies

Noah G. Perlut; Allan M. Strong; Therese M. Donovan; Neil J. Buckley

In recent decades, earlier and more frequent harvests of agricultural grasslands have been implicated as a major cause of population declines in grassland songbirds. From 2002 to 2005, in the Champlain Valley of Vermont and New York, USA, we studied the reproductive success of Savannah Sparrows (Passerculus sandwichensis) and Bobolinks (Dolichonyx oryzivorus) on four grassland treatments: (1) early-hayed fields cut before 11 June and again in early- to mid-July; (2) middle-hayed fields cut once between 21 June and 10 July; (3) late-hayed fields cut after 1 August; and (4) rotationally grazed pastures. Both the number of fledglings per female per year and nest success (logistic-exposure method) varied among treatments and between species. Although birds initiated nests earlier on early-hayed fields compared to others, haying caused 99% of active Savannah Sparrow and 100% of active Bobolink nests to fail. Both the initial cutting date and time between cuttings influenced renesting behavior. After haying, Savannah Sparrows generally remained on early-hayed fields and immediately renested (clutch completion 15.6 +/- 1.28 days post-haying; all values are reported as mean +/- SE), while Bobolinks abandoned the fields for at least two weeks (mean clutch completion 33 +/- 0.82 days post-haying). While female Savannah Sparrows fledged more offspring per year (1.28 +/- 0.16) than female Bobolinks (0.05 +/- 0.05), reproductive success on early-hayed fields was low. The number of fledglings per female per year was greater on middle-hayed fields (Savannah Sparrows, 3.47 +/- 0.42; Bobolinks, 2.22 +/- 0.26), and late-hayed fields (Savannah Sparrows, 3.29 +/- 0.30; Bobolinks, 2.79 +/- 0.18). Reproductive success was moderate on rotationally grazed pastures, where female Savannah Sparrows and female Bobolinks produced 2.32 +/- 0.25 and 1.79 +/- 0.33 fledgling per year, respectively. We simultaneously conducted cutting surveys throughout the Champlain Valley and found that 3-8% of hayfield habitat was cut by 1-4 June, 25-40% by 12-16 June, and 32-60% by 28 June-2 July. Thus, the majority of grassland habitat was cut during the breeding season; however, late-hayed fields served as high-quality reserves for late-nesting female Bobolinks that were displaced from previously hayed fields. For fields first cut in May, a 65-day interval between cuts could provide enough time for both species to successfully fledge young.


Conservation Biology | 2009

Characteristics of important stopover locations for migrating birds: remote sensing with radar in the Great Lakes basin.

David N. Bonter; Sidney A. Gauthreaux; Therese M. Donovan

A preliminary stage in developing comprehensive conservation plans involves identifying areas used by the organisms of interest. The areas used by migratory land birds during temporal breaks in migration (stopover periods) have received relatively little research and conservation attention. Methodologies for identifying stopover sites across large geographic areas have been, until recently, unavailable. Advances in weather-radar technology now allow for evaluation of bird migration patterns at large spatial scales. We analyzed radar data (WSR-88D) recorded during spring migration in 2000 and 2001 at 6 sites in the Great Lakes basin (U.S.A.). Our goal was to link areas of high migrant activity with the land-cover types and landscape contexts corresponding to those areas. To characterize the landscapes surrounding stopover locations, we integrated radar and land-cover data within a geographic information system. We compared landscape metrics within 5 km of areas that consistently hosted large numbers of migrants with landscapes surrounding randomly selected areas that were used by relatively few birds during migration. Concentration areas were characterized by 1.2 times more forest cover and 9.3 times more water cover than areas with little migrant activity. We detected a strong negative relationship between activity of migratory birds and agricultural land uses. Examination of individual migration events confirmed the importance of fragments of forested habitat in highly altered landscapes and highlighted large concentrations of birds departing from near-shore terrestrial areas in the Great Lakes basin. We conclude that conservation efforts can be more effectively targeted through intensive analysis of radar imagery.


Journal of Field Ornithology | 2002

Priority research needs for the conservation of Neotropical migrant landbirds

Therese M. Donovan; Carol J. Beardmore; David N. Bonter; Jeffrey D. Brawn; Robert J. Cooper; Jane A. Fitzgerald; Robert G. Ford; Sidney A. Gauthreaux; T. Luke George; William C. Hunter; Thomas E. Martin; Jeff T. Price; Kenneth V. Rosenberg; Peter D. Vickery; T. Bently Wigley

Abstract Partners in Flight (PIF) is a consortium of professional and volunteer scientists and educators that promotes the conservation of landbird species. Central to the PIF conservation effort is the development of Bird Conservation Plans specific to each physiographic region of the United States. Without a coordinated prioritization of research needs, land managers, researchers, and funding agencies seeking to conserve landbirds lack direction. To address this issue, we (the Research Working Group of Partners in Flight) identified research priorities that have emerged recently as a result of Bird Conservation Plan development. Research priorities for the coming decade focus on habitat, specifically the identification of high-quality habitats and landscapes for breeding, migration, and wintering. Identification of the scale of breeding and natal dispersal and describing linkages between wintering and breeding populations are also research priorities for the coming decade. A summary of research priorities for each of the PIF regions (Northeast, Midwest, West, and South) is also provided. Specific research needs associated with priority species and habitats in each physiographic area can be accessed in a searchable database: http://www.partnersinflight.org/pifneeds/searchform.cfm.


The Auk | 2007

DAILY MASS CHANGES IN LANDBIRDS DURING MIGRATION STOPOVER ON THE SOUTH SHORE OF LAKE ONTARIO

David N. Bonter; Therese M. Donovan; Elizabeth W. Brooks

Abstract Assigning conservation priorities to areas used by birds during migration requires information on the relative quality of areas and habitats. The rate at which migratory birds replenish energy reserves during stopover may be used as an indicator of stopover-site quality. We estimated the rate of mass gain of 34 landbird species during stopover at a near-shore terrestrial site on the south shore of Lake Ontario in New York during 12 migration seasons from 1999 to 2004. The average rate of mass gain was estimated by relating a measure of condition to time of capture (hour after sunrise) with linear regression. Data from 25,385 captures were analyzed. Significantly positive rates of mass change were detected for 20 of 30 species during spring migration and 19 of 21 species during autumn migration. No significantly negative trends were detected in either season. Daily rates of mass gain across all species averaged 9.84% of average lean body weight during spring migration and 9.77% during autumn migration. Our regression estimates were significantly greater than estimates from traditional analyses that examine mass changes in recaptured birds. Analyses of mass changes in recaptured birds revealed a mean daily change of −0.68% of average lean mass in spring and 0.13% in autumn. Because of sampling biases inherent in recapture analyses, the regression approach is likely more accurate when the assumptions of the method are met. Similar studies in various habitats, landscapes, and regions are required to prioritize conservation efforts targeting migratory stages of the annual cycle. Cambios de Peso Diarios de Aves Terrestres durante las Paradas Migratorias en la Costa sur del Lago Ontario


Journal of Wildlife Management | 2006

Predicting Minimum Habitat Characteristics for the Indiana Bat in the Champlain Valley

Kristen S. Watrous; Therese M. Donovan; Ruth M. Mickey; Scott R. Darling; Alan C. Hicks; Susanna L. Von Oettingen

Abstract Predicting potential habitat across a landscape for rare species is extremely challenging. However, partitioned Mahalanobis D2 methods avoid pitfalls commonly encountered when surveying rare species by using data collected only at known species locations. Minimum habitat requirements are then determined by examining a principal components analysis to find consistent habitat characteristics across known locations. We used partitioned D2 methods to examine minimum habitat requirements of Indiana bats (Myotis sodalis) in the Champlain Valley of Vermont and New York, USA, across 7 spatial scales and map potential habitat for the species throughout the same area. We radiotracked 24 female Indiana bats to their roost trees and across their nighttime foraging areas to collect habitat characteristics at 7 spatial scales: 1) roost trees, 2) 0.1-ha circular plots surrounding the roost trees, 3) home ranges, and 4–7) 0.5-km, 1-km, 2-km, and 3-km buffers surrounding the roost tree. Roost trees (n = 50) typically were tall, dead, large-diameter trees with exfoliating bark, located at low elevations and close to water. Trees surrounding roosts typically were smaller in diameter and shorter in height, but they had greater soundness than the roost trees. We documented 14 home ranges in areas of diverse, patchy land cover types that were close to water with east-facing aspects. Across all landscape extents, area of forest within roost-tree buffers and the aspect across those buffers were the most consistent features. Predictive maps indicated that suitable habitat ranged from 4.7–8.1% of the area examined within the Champlain Valley. These habitat models further understanding of Indiana bat summer habitat by indicating minimum habitat characteristics at multiple scales and can be used to aid management decisions by highlighting potential habitat. Nonetheless, information on juvenile production and recruitment is lacking; therefore, assessments of Indiana bat habitat quality in the region are still incomplete.


Conservation Biology | 2011

A Multispecies Framework for Landscape Conservation Planning

W. Scott Schwenk; Therese M. Donovan

Rapidly changing landscapes have spurred the need for quantitative methods for conservation assessment and planning that encompass large spatial extents. We devised and tested a multispecies framework for conservation planning to complement single-species assessments and ecosystem-level approaches. Our framework consisted of 4 elements: sampling to effectively estimate population parameters, measuring how human activity affects landscapes at multiple scales, analyzing the relation between landscape characteristics and individual species occurrences, and evaluating and comparing the responses of multiple species to landscape modification. We applied the approach to a community of terrestrial birds across 25,000 km(2) with a range of intensities of human development. Human modification of land cover, road density, and other elements of the landscape, measured at multiple spatial extents, had large effects on occupancy of the 67 species studied. Forest composition within 1 km of points had a strong effect on occupancy of many species and a range of negative, intermediate, and positive associations. Road density within 1 km of points, percent evergreen forest within 300 m, and distance from patch edge were also strongly associated with occupancy for many species. We used the occupancy results to group species into 11 guilds that shared patterns of association with landscape characteristics. Our multispecies approach to conservation planning allowed us to quantify the trade-offs of different scenarios of land-cover change in terms of species occupancy.


Avian Conservation and Ecology | 2010

Habitat Use Patterns of Bobolinks and Savannah Sparrows in the Northeastern United States

Daniel P. Shustack; Allan M. Strong; Therese M. Donovan

In the northeastern United States, grassland birds regularly use agricultural fields as nesting habitat. However, birds that nest in these fields regularly experience nest failure as a result of agricultural practices, such as mowing and grazing. Therefore, information on both spatial and temporal patterns of habitat use is needed to effectively manage these species. We addressed these complex habitat use patterns by conducting point counts during three time intervals between May 21, 2002 and July 2, 2002 in agricultural fields across the Champlain Valley in Vermont and New York. Early in the breeding season, Bobolinks (Dolichonyx oryzivorus) used fields in which the landscape within 2500 m was dominated by open habitats. As mowing began, suitable habitat within 500 m became more important. Savannah Sparrows (Passerculus sandwichensis) initially used fields that contained a high proportion of suitable habitat within 500 m. After mowing, features of the field (i.e., size and amount of woody edge) became more important. Each species responded differently to mowing: Savannah Sparrows were equally abundant in mowed and uncut fields, whereas Bobolinks were more abundant in uncut fields. In agricultural areas in the Northeast, large areas (2000 ha) that are mostly nonforested and undeveloped should be targeted for conservation. Within large open areas, smaller patches (80 ha) should be maintained as high-quality, late-cut grassland habitat. RÉSUMÉ. Dans le Nord-est des États-Unis, les oiseaux de prairie nichent régulièrement dans les champs agricoles. Cependant, la nidification de ces oiseaux échoue souvent en raison des activités agricoles, comme le fauchage et le broutement. Il s’avère donc nécessaire de connaître les caractéristiques spatio-temporelles relatives à l’utilisation de l’habitat pour gérer efficacement ces espèces. Nous avons examiné ces patrons complexes de l’utilisation de l’habitat au moyen de dénombrements par points d’écoute effectués à trois périodes entre le 21 mai et le 2 juillet 2002, dans des champs agricoles de la vallée de Champlain dans les États du Vermont et de New York. Tôt dans la saison de nidification, les Goglus des prés (Dolichonyx oryzivorus) ont utilisé des champs situés dans des paysages où les milieux ouverts dominaient dans un rayon de 2 500 m. Lorsque le fauchage a commencé, l’habitat propice dans un rayon de 500 m est devenu plus important. Les Bruants des prés (Passerculus sandwichensis) ont utilisé des champs qui offraient un habitat propice dans un rayon de 500 m dès le début de la saison. Une fois le fauchage terminé, les caractéristiques des champs (c.-à-d. la dimension et la quantité de lisières boisées) sont devenues davantage déterminantes. Les deux espèces ont agi différemment face au fauchage : les bruants ont utilisé les champs fauchés et les champs non fauchés de façon égale, tandis que les goglus étaient plus nombreux dans les champs n’ayant pas subi de fauchage. Dans les zones agricoles du Nord-est, les vastes régions (2 000 ha) University of Vermont, The Rubenstein School of Environment and Natural Resources, U.S. Geological Survey, Vermont Cooperative Fish and Wildlife Research Unit Avian Conservation and Ecology 5(2): 11 http://www.ace-eco.org/vol5/iss2/art11/ qui ne sont ni boisées ni développées devraient être considérées à des fins de conservation. Dans les grands milieux ouverts, des parcelles plus petites (80 ha) – pour lesquelles le fauchage serait retardé – devraient être conservées en tant que milieux de prairie de qualité supérieure.

Collaboration


Dive into the Therese M. Donovan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frank R. Thompson

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Neil J. Buckley

State University of New York at Plattsburgh

View shared research outputs
Researchain Logo
Decentralizing Knowledge