Therese Mandel
University of Bern
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Therese Mandel.
Nature | 2003
Didier Reinhardt; Eva-Rachele Pesce; Pia A. Stieger; Therese Mandel; Kurt Baltensperger; Malcolm J. Bennett; Jan Traas; Jir̆ı́ Friml; Cris Kuhlemeier
The regular arrangement of leaves around a plants stem, called phyllotaxis, has for centuries attracted the attention of philosophers, mathematicians and natural scientists; however, to date, studies of phyllotaxis have been largely theoretical. Leaves and flowers are formed from the shoot apical meristem, triggered by the plant hormone auxin. Auxin is transported through plant tissues by specific cellular influx and efflux carrier proteins. Here we show that proteins involved in auxin transport regulate phyllotaxis. Our data indicate that auxin is transported upwards into the meristem through the epidermis and the outermost meristem cell layer. Existing leaf primordia act as sinks, redistributing auxin and creating its heterogeneous distribution in the meristem. Auxin accumulation occurs only at certain minimal distances from existing primordia, defining the position of future primordia. This model for phyllotaxis accounts for its reiterative nature, as well as its regularity and stability.
The Plant Cell | 2000
Didier Reinhardt; Therese Mandel; Cris Kuhlemeier
Leaves originate from the shoot apical meristem, a small mound of undifferentiated tissue at the tip of the stem. Leaf formation begins with the selection of a group of founder cells in the so-called peripheral zone at the flank of the meristem, followed by the initiation of local growth and finally morphogenesis of the resulting bulge into a differentiated leaf. Whereas the mechanisms controlling the switch between meristem propagation and leaf initiation are being identified by genetic and molecular analyses, the radial positioning of leaves, known as phyllotaxis, remains poorly understood. Hormones, especially auxin and gibberellin, are known to influence phyllotaxis, but their specific role in the determination of organ position is not clear. We show that inhibition of polar auxin transport blocks leaf formation at the vegetative tomato meristem, resulting in pinlike naked stems with an intact meristem at the tip. Microapplication of the natural auxin indole-3-acetic acid (IAA) to the apex of such pins restores leaf formation. Similarly, exogenous IAA induces flower formation on Arabidopsis pin-formed1-1 inflorescence apices, which are blocked in flower formation because of a mutation in a putative auxin transport protein. Our results show that auxin is required for and sufficient to induce organogenesis both in the vegetative tomato meristem and in the Arabidopsis inflorescence meristem. In this study, organogenesis always strictly coincided with the site of IAA application in the radial dimension, whereas in the apical–basal dimension, organ formation always occurred at a fixed distance from the summit of the meristem. We propose that auxin determines the radial position and the size of lateral organs but not the apical–basal position or the identity of the induced structures.
Proceedings of the National Academy of Sciences of the United States of America | 2006
Richard S. Smith; Soazig Guyomarc'h; Therese Mandel; Didier Reinhardt; Cris Kuhlemeier; Przemyslaw Prusinkiewicz
A striking phenomenon unique to the kingdom of plants is the regular arrangement of lateral organs around a central axis, known as phyllotaxis. Recent molecular-genetic experiments indicate that active transport of the plant hormone auxin is the key process regulating phyllotaxis. A conceptual model based on these experiments, introduced by Reinhardt et al. [Reinhardt, D., Pesce, E. R., Stieger, P., Mandel, T., Baltensperger, K., et al. (2003) Nature 426, 255–260], provides an intuitively plausible interpretation of the data, but raises questions of whether the proposed mechanism is, in fact, capable of producing the observed temporal and spatial patterns, is robust, can start de novo, and can account for phyllotactic transitions, such as the frequently observed transition from decussate to spiral phyllotaxis. To answer these questions, we created a computer simulation model based on data described previously or in this paper and reasonable hypotheses. The model reproduces, within the standard error, the divergence angles measured in Arabidopsis seedlings and the effects of selected experimental manipulations. It also reproduces distichous, decussate, and tricussate patterns. The model thus offers a plausible link between molecular mechanisms of morphogenesis and the geometry of phyllotaxis.
The Plant Cell | 2007
Maria Elena Hoballah; Thomas Gübitz; Jeroen Stuurman; Larissa Broger; Mario Barone; Therese Mandel; Alexandre Dell'Olivo; Maeva Arnold; Cris Kuhlemeier
Animal-mediated pollination is essential in plant reproductive biology and is often associated with pollination syndromes, sets of floral traits, such as color, scent, shape, or nectar content. Selection by pollinators is often considered a key factor in floral evolution and plant speciation. Our aim is the identification and characterization of the genetic changes that caused the evolution of divergent pollination syndromes in closely related plant species. We focus on ANTHOCYANIN2 (AN2), a well-defined myb-type transcription factor that is a major determinant of flower color variation between Petunia integrifolia and Petunia axillaris. Analysis of sequence variation in AN2 in wild P. axillaris accessions showed that loss-of-function alleles arose at least five times independently. DNA sequence analysis was complemented by functional assays for pollinator preference using genetic introgressions and transgenics. These results show that AN2 is a major determinant of pollinator attraction. Therefore, changes in a single gene cause a major shift in pollination biology and support the notion that the adaptation of a flowering plant to a new pollinator type may involve a limited number of genes of large effect. Gene identification and analysis of molecular evolution in combination with behavioral and ecological studies can ultimately unravel the evolutionary genetics of pollination syndromes.
The Plant Cell | 1998
Didier Reinhardt; Franz Wittwer; Therese Mandel; Cris Kuhlemeier
Expansins are extracellular proteins that increase plant cell wall extensibility in vitro and are thought to be involved in cell expansion. We showed in a previous study that administration of an exogenous expansin protein can trigger the initiation of leaflike structures on the shoot apical meristem of tomato. Here, we studied the expression patterns of two tomato expansin genes, LeExp2 and LeExp18. LeExp2 is preferentially expressed in expanding tissues, whereas LeExp18 is expressed preferentially in tissues with meristematic activity. In situ hybridization experiments showed that LeExp18 expression is elevated in a group of cells, called I1, which is the site of incipient leaf primordium initiation. Thus, LeExp18 expression is a molecular marker for leaf initiation, predicting the site of primordium formation at a time before histological changes can be detected. We propose a model for the regulation of phyllotaxis that postulates a crucial role for expansin in leaf primordium initiation.
Genes & Development | 2008
Kathrine Bainbridge; Soazig Guyomarc'h; Emmanuelle Bayer; Ranjan Swarup; Malcolm J. Bennett; Therese Mandel; Cris Kuhlemeier
One of the most striking features of plant architecture is the regular arrangement of leaves and flowers around the stem, known as phyllotaxis. Peaks in concentration of the plant hormone auxin, generated by the polar localization of the PIN1 auxin efflux carrier, provide the instructive signal for primordium initiation. This mechanism generates the spacing between neighboring primordia, which results in regular phyllotaxis. Studies of the role of auxin transport in phyllotactic patterning have focused on PIN1-mediated efflux. Recent computer simulations indicate an additional role for transporter-mediated auxin uptake. Mutations in the AUX1 auxin influx carrier have not, however, been reported to cause an aerial phenotype. Here, we study the role of AUX1 and its paralogs LAX1, LAX2, and LAX3. Analysis of the quadruple mutant reveals irregular divergence angles between successive primordia. A highly unusual aspect of the phenotype is the occurrence of clusters of primordia, in violation of classical theory. At the molecular level, the sharp peaks in auxin levels and coordinated PIN polarization are reduced or lost. In addition, the increased penetrance of the phenotype under short-day conditions suggests that the AUX LAX transporters act to buffer the PIN-mediated patterning mechanism against environmental or developmental influences.
Development | 2003
Didier Reinhardt; Martin Frenz; Therese Mandel; Cris Kuhlemeier
Plants exhibit life-long organogenic and histogenic activity in a specialised organ, the shoot apical meristem. Leaves and flowers are formed within the ring-shaped peripheral zone, which surrounds the central zone, the site of the stem cells. We have undertaken a series of high-precision laser ablation and microsurgical tissue removal experiments to test the functions of different parts of the tomato meristem, and to reveal their interactions. Ablation of the central zone led to ectopic expression of the WUSCHEL gene at the periphery, followed by the establishment of a new meristem centre. After the ablation of the central zone, organ formation continued without a lag. Thus, the central zone does not participate in organogenesis, except as the ultimate source of founder cells. Microsurgical removal of the external L1 layer induced periclinal cell divisions and terminal differentiation in the subtending layers. In addition, no organs were initiated in areas devoid of L1, demonstrating an important role of the L1 in organogenesis. L1 ablation had only local effects, an observation that is difficult to reconcile with phyllotaxis theories that invoke physical tension operating within the meristem as a whole. Finally, regeneration of L1 cells was never observed after ablation. This shows that while the zones of the meristem show a remarkable capacity to regenerate after interference, elimination of the L1 layer is irreparable and causes terminal differentiation.
The Plant Cell | 1993
Andrew Fleming; Therese Mandel; Isabelle Roth; Cris Kuhlemeier
In this paper, we describe the synthesis of a cDNA library from the vegetative shoot apical meristem and the analysis of clones selected from it. Using in situ hybridization, we characterized the patterns of expression of these genes in the tomato shoot apical meristem, as well as the patterns obtained from other sources. The results from the analysis of 15 cDNAs indicated the following six main patterns of gene expression in the shoot apical meristem: overall expression, zero expression, expression limited to the epidermis, expression excluded from the epidermis, punctate expression, and expression elevated in the flanks of the meristem. The patterns observed and the nature and number of the genes showing these patterns necessitate a reinterpretation of the models of meristem structure and function. In particular, the data suggest a compartmentation within the shoot apical meristem based on the spatial expression of particular subsets of genes. This paper also reports on the specific and precise criteria essential for the correct identification of meristem-specific gene expression. The data give new insight into the molecular organization of the shoot apical meristem and provide the framework for a detailed dissection of the factors controlling this organization.
Current Biology | 2012
Naomi Nakayama; Richard S. Smith; Therese Mandel; Sarah Robinson; Seisuke Kimura; Arezki Boudaoud; Cris Kuhlemeier
BACKGROUND The phytohormone auxin is a primary regulator of growth and developmental pattern formation in plants. Auxin accumulates at specific sites (e.g., organ primordia) and induces localized growth within a tissue. Auxin also mediates developmental responses to intrinsic and external physical stimuli; however, exactly how mechanics influences auxin distribution is unknown. RESULTS Here we show that mechanical strain can regulate auxin transport and accumulation in the tomato shoot apex, where new leaves emerge and rapidly grow. Modification of turgor pressure, application of external force, and artificial growth induction collectively show that the amount and intracellular localization of the auxin efflux carrier PIN1 are sensitive to mechanical alterations. In general, the more strained the tissue was, the more PIN1 was present per cell and the higher the proportion localized to the plasma membrane. Modulation of the membrane properties alone was sufficient to explain most of the mechanical effects. CONCLUSIONS Our experiments support the hypothesis that the plasma membrane acts as a sensor of tissue mechanics that translates the cell wall strain into cellular responses, such as the intracellular localization of membrane-embedded proteins. One implication of this fundamental mechanism is the mechanical enhancement of auxin-mediated growth in young organ primordia. We propose that growth-induced mechanical strain upregulates PIN1 function and auxin accumulation, thereby promoting further growth, in a robust positive feedback loop.
Genes & Development | 2011
Saiko Yoshida; Therese Mandel; Cris Kuhlemeier
Leaves originate from stem cells located at the shoot apical meristem. The meristem is shielded from the environment by older leaves, and leaf initiation is considered to be an autonomous process that does not depend on environmental cues. Here we show that light acts as a morphogenic signal that controls leaf initiation and stabilizes leaf positioning. Leaf initiation in tomato shoot apices ceases in the dark but resumes in the light, an effect that is mediated through the plant hormone cytokinin. Dark treatment also affects the subcellular localization of the auxin transporter PIN1 and the concomitant formation of auxin maxima. We propose that cytokinin is required for meristem propagation, and that auxin redirects cytokinin-inducible meristem growth toward organ formation. In contrast to common wisdom over the last 150 years, the light environment controls the initiation of lateral organs by regulating two key hormones: auxin and cytokinin.