Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Theresia E. B. Stradal is active.

Publication


Featured researches published by Theresia E. B. Stradal.


Trends in Cell Biology | 2002

The lamellipodium : where motility begins

J. Victor Small; Theresia E. B. Stradal; Emmanuel Vignal; Klemens Rottner

Lamellipodia, filopodia and membrane ruffles are essential for cell motility, the organization of membrane domains, phagocytosis and the development of substrate adhesions. Their formation relies on the regulated recruitment of molecular scaffolds to their tips (to harness and localize actin polymerization), coupled to the coordinated organization of actin filaments into lamella networks and bundled arrays. Their turnover requires further molecular complexes for the disassembly and recycling of lamellipodium components. Here, we give a spatial inventory of the many molecular players in this dynamic domain of the actin cytoskeleton in order to highlight the open questions and the challenges ahead.


Nature Cell Biology | 2004

Abi1 is essential for the formation and activation of a WAVE2 signalling complex

Metello Innocenti; Adriana Zucconi; Andrea Disanza; Emanuela Frittoli; Liliana B. Areces; Anika Steffen; Theresia E. B. Stradal; Pier Paolo Di Fiore; Marie-France Carlier; Giorgio Scita

WAVE2 belongs to a family of proteins that mediates actin reorganization by relaying signals from Rac to the Arp2/3 complex, resulting in lamellipodia protrusion. WAVE2 displays Arp2/3-dependent actin nucleation activity in vitro, and does not bind directly to Rac. Instead, it forms macromolecular complexes that have been reported to exert both positive and negative modes of regulation. How these complexes are assembled, localized and activated in vivo remains to be established. Here we use tandem mass spectrometry to identify an Abi1-based complex containing WAVE2, Nap1 (Nck-associated protein) and PIR121. Abi1 interacts directly with the WHD domain of WAVE2, increases WAVE2 actin polymerization activity and mediates the assembly of a WAVE2–Abi1–Nap1–PIR121 complex. The WAVE2–Abi1–Nap1–PIR121 complex is as active as the WAVE2–Abi1 sub-complex in stimulating Arp2/3, and after Rac activation it is re-localized to the leading edge of ruffles in vivo. Consistently, inhibition of Abi1 by RNA interference (RNAi) abrogates Rac-dependent lamellipodia protrusion. Thus, Abi1 orchestrates the proper assembly of the WAVE2 complex and mediates its activation at the leading edge in vivo.


The EMBO Journal | 2004

Sra‐1 and Nap1 link Rac to actin assembly driving lamellipodia formation

Anika Steffen; Klemens Rottner; Julia Ehinger; Metello Innocenti; Giorgio Scita; Jürgen Wehland; Theresia E. B. Stradal

The Rho‐GTPase Rac1 stimulates actin remodelling at the cell periphery by relaying signals to Scar/WAVE proteins leading to activation of Arp2/3‐mediated actin polymerization. Scar/WAVE proteins do not interact with Rac1 directly, but instead assemble into multiprotein complexes, which was shown to regulate their activity in vitro. However, little information is available on how these complexes function in vivo. Here we show that the specifically Rac1‐associated protein‐1 (Sra‐1) and Nck‐associated protein 1 (Nap1) interact with WAVE2 and Abi‐1 (e3B1) in resting cells or upon Rac activation. Consistently, Sra‐1, Nap1, WAVE2 and Abi‐1 translocated to the tips of membrane protrusions after microinjection of constitutively active Rac. Moreover, removal of Sra‐1 or Nap1 by RNA interference abrogated the formation of Rac‐dependent lamellipodia induced by growth factor stimulation or aluminium fluoride treatment. Finally, microinjection of an activated Rac failed to restore lamellipodia protrusion in cells lacking either protein. Thus, Sra‐1 and Nap1 are constitutive and essential components of a WAVE2‐ and Abi‐1‐containing complex linking Rac to site‐directed actin assembly.


Journal of Cell Biology | 2007

c-Met is essential for wound healing in the skin.

Jolanta Chmielowiec; Malgorzata Borowiak; Markus Morkel; Theresia E. B. Stradal; Barbara Munz; Sabine Werner; Jürgen Wehland; Carmen Birchmeier; Walter Birchmeier

Wound healing of the skin is a crucial regenerative process in adult mammals. We examined wound healing in conditional mutant mice, in which the c-Met gene that encodes the receptor of hepatocyte growth factor/scatter factor was mutated in the epidermis by cre recombinase. c-Met–deficient keratinocytes were unable to contribute to the reepithelialization of skin wounds. In conditional c-Met mutant mice, wound closure was slightly attenuated, but occurred exclusively by a few (5%) keratinocytes that had escaped recombination. This demonstrates that the wound process selected and amplified residual cells that express a functional c-Met receptor. We also cultured primary keratinocytes from the skin of conditional c-Met mutant mice and examined them in scratch wound assays. Again, closure of scratch wounds occurred by the few remaining c-Met–positive cells. Our data show that c-Met signaling not only controls cell growth and migration during embryogenesis but is also essential for the generation of the hyperproliferative epithelium in skin wounds, and thus for a fundamental regenerative process in the adult.


The EMBO Journal | 2008

Arp2/3 complex interactions and actin network turnover in lamellipodia

Frank P. L. Lai; Malgorzata Szczodrak; Jennifer Block; Jan Faix; Dennis Breitsprecher; Hans Georg Mannherz; Theresia E. B. Stradal; Graham Dunn; J. Victor Small; Klemens Rottner

Cell migration is initiated by lamellipodia—membrane‐enclosed sheets of cytoplasm containing densely packed actin filament networks. Although the molecular details of network turnover remain obscure, recent work points towards key roles in filament nucleation for Arp2/3 complex and its activator WAVE complex. Here, we combine fluorescence recovery after photobleaching (FRAP) of different lamellipodial components with a new method of data analysis to shed light on the dynamics of actin assembly/disassembly. We show that Arp2/3 complex is incorporated into the network exclusively at the lamellipodium tip, like actin, at sites coincident with WAVE complex accumulation. Capping protein likewise showed a turnover similar to actin and Arp2/3 complex, but was confined to the tip. In contrast, cortactin—another prominent Arp2/3 complex regulator—and ADF/cofilin—previously implicated in driving both filament nucleation and disassembly—were rapidly exchanged throughout the lamellipodium. These results suggest that Arp2/3‐ and WAVE complex‐driven actin filament nucleation at the lamellipodium tip is uncoupled from the activities of both cortactin and cofilin. Network turnover is additionally regulated by the spatially segregated activities of capping protein at the tip and cofilin throughout the mesh.


Nature Cell Biology | 2006

Regulation of cell shape by Cdc42 is mediated by the synergic actin-bundling activity of the Eps8-IRSp53 complex.

Andrea Disanza; Sara Mantoani; Maud Hertzog; Silke Gerboth; Emanuela Frittoli; Anika Steffen; Kerstin Berhoerster; Hans-Juergen Kreienkamp; Francesca Milanesi; Pier Paolo Di Fiore; Andrea Ciliberto; Theresia E. B. Stradal; Giorgio Scita

Actin-crosslinking proteins organize actin into highly dynamic and architecturally diverse subcellular scaffolds that orchestrate a variety of mechanical processes, including lamellipodial and filopodial protrusions in motile cells. How signalling pathways control and coordinate the activity of these crosslinkers is poorly defined. IRSp53, a multi-domain protein that can associate with the Rho-GTPases Rac and Cdc42, participates in these processes mainly through its amino-terminal IMD (IRSp53 and MIM domain). The isolated IMD has actin-bundling activity in vitro and is sufficient to induce filopodia in vivo. However, the manner of regulation of this activity in the full-length protein remains largely unknown. Eps8 is involved in actin dynamics through its actin barbed-ends capping activity and its ability to modulate Rac activity. Moreover, Eps8 binds to IRSp53. Here, we describe a novel actin crosslinking activity of Eps8. Additionally, Eps8 activates and synergizes with IRSp53 in mediating actin bundling in vitro, enhancing IRSp53-dependent membrane extensions in vivo. Cdc42 binds to and controls the cellular distribution of the IRSp53–Eps8 complex, supporting the existence of a Cdc42–IRSp53–Eps8 signalling pathway. Consistently, Cdc42-induced filopodia are inhibited following individual removal of either IRSp53 or Eps8. Collectively, these results support a model whereby the synergic bundling activity of the IRSp53–Eps8 complex, regulated by Cdc42, contributes to the generation of actin bundles, thus promoting filopodial protrusions.


Nature Cell Biology | 2005

Abi1 regulates the activity of N-WASP and WAVE in distinct actin-based processes

Metello Innocenti; Silke Gerboth; Klemens Rottner; Frank P. L. Lai; Maud Hertzog; Theresia E. B. Stradal; Emanuela Frittoli; Dominique Didry; Simona Polo; Andrea Disanza; Stefanie Benesch; Pier Paolo Di Fiore; Marie-France Carlier; Giorgio Scita

Neural Wiskott–Aldrich syndrome protein (N-WASP) and WAVE are members of a family of proteins that use the Arp2/3 complex to stimulate actin assembly in actin-based motile processes. By entering into distinct macromolecular complexes, they act as convergent nodes of different signalling pathways. The role of WAVE in generating lamellipodial protrusion during cell migration is well established. Conversely, the precise cellular functions of N-WASP have remained elusive. Here, we report that Abi1, an essential component of the WAVE protein complex, also has a critical role in regulating N-WASP-dependent function. Consistently, Abi1 binds to N-WASP with nanomolar affinity and, cooperating with Cdc42, potently induces N-WASP activity in vitro. Molecular genetic approaches demonstrate that Abi1 and WAVE, but not N-WASP, are essential for Rac-dependent membrane protrusion and macropinocytosis. Conversely, Abi1 and N-WASP, but not WAVE, regulate actin-based vesicular transport, epidermal growth factor receptor (EGFR) endocytosis, and EGFR and transferrin receptor (TfR) cell-surface distribution. Thus, Abi1 is a dual regulator of WAVE and N-WASP activities in specific processes that are dependent on actin dynamics.


Nature Cell Biology | 2004

Eps8 controls actin-based motility by capping the barbed ends of actin filaments

Andrea Disanza; Marie-France Carlier; Theresia E. B. Stradal; Dominique Didry; Emanuela Frittoli; Stefano Confalonieri; Assunta Croce; Jürgen Wehland; Pier Paolo Di Fiore; Giorgio Scita

Actin filament barbed-end capping proteins are essential for cell motility, as they regulate the growth of actin filaments to generate propulsive force. One family of capping proteins, whose prototype is gelsolin, shares modular architecture, mechanism of action, and regulation through signalling-dependent mechanisms, such as Ca2+ or phosphatidylinositol-4,5-phosphate binding. Here we show that proteins of another family, the Eps8 family, also show barbed-end capping activity, which resides in their conserved carboxy-terminal effector domain. The isolated effector domain of Eps8 caps barbed ends with an affinity in the nanomolar range. Conversely, full-length Eps8 is auto-inhibited in vitro, and interaction with the Abi1 protein relieves this inhibition. In vivo, Eps8 is recruited to actin dynamic sites, and its removal impairs actin-based propulsion. Eps8-family proteins do not show any similarity to gelsolin-like proteins. Thus, our results identify a new family of actin cappers, and unveil novel modalities of regulation of capping through protein–protein interactions. One established function of the Eps8–Abi1 complex is to participate in the activation of the small GTPase Rac, suggesting a multifaceted role for this complex in actin dynamics, possibly through the participation in alternative larger complexes.


Proceedings of the National Academy of Sciences of the United States of America | 2006

The bundling activity of vasodilator-stimulated phosphoprotein is required for filopodium formation

Antje Schirenbeck; Rajesh Arasada; Till Bretschneider; Theresia E. B. Stradal; Michael Schleicher; Jan Faix

Filopodia are highly dynamic finger-like cell protrusions filled with parallel bundles of actin filaments. Previously we have shown that Diaphanous-related formin dDia2 is involved in the formation of filopodia. Another key player for the formation of filopodia across many species is vasodilator-stimulated phosphoprotein (VASP). It has been proposed that the essential role of VASP for formation of filopodia is its competition with capping proteins for filament barbed-end interaction. To better understand the function of VASP in filopodium formation, we analyzed the in vitro and in vivo properties of Dictyostelium VASP (DdVASP) and extended our findings to human VASP. Recombinant VASP from both species nucleated and bundled actin filaments, but did not compete with capping proteins or block depolymerization from barbed ends. Together with the finding that DdVASP binds to the FH2 domain of dDia2, these data indicate that the crucial role of VASP in filopodium formation is different from uncapping of actin filaments. To identify the activity of DdVASP required in this process, rescue experiments of DdVASP-null cells with mutant DdVASP constructs were performed. Only WT DdVASP, but not a mutant lacking the F-actin bundling activity, could rescue the ability of these cells to form WT-like filopodia. Our data suggest that DdVASP is complexed with dDia2 in filopodial tips and support formin-mediated filament elongation by bundling nascent actin filaments.


Journal of Cell Science | 2005

N-WASP deficiency impairs EGF internalization and actin assembly at clathrin-coated pits

Stefanie Benesch; Simona Polo; Frank P. L. Lai; Kurt I. Anderson; Theresia E. B. Stradal; Juergen Wehland; Klemens Rottner

WASP and WAVE family proteins promote actin polymerization by stimulating Arp2/3-complex-dependent filament nucleation. Unlike WAVE proteins, which are known to drive the formation of protrusions such as lamellipodia and membrane ruffles, vertebrate cell functions of WASP or N-WASP are less well established. Recent work demonstrated that clathrin-coated pit invagination can coincide with assembly of actin filaments and with accumulation of N-WASP and Arp2/3 complex, but the relevance of their recruitment has remained poorly defined. We employed two-colour total internal reflection microscopy to study the recruitment and dynamics of various components of the actin polymerization machinery and the epidermal growth factor receptor signalling machinery during clathrin-coated pit internalization in control cells and cells genetically deficient for functional N-WASP. We found that clathrin-coated pit endocytosis coincides with the recruitment of N-WASP, Arp2/3 complex and associated proteins, but not of WAVE family members. Actin accumulation at clathrin-coated pits requires the Arp2/3 complex, since Arp2/3 complex sequestration in the cytosol abolished any detectable actin assembly. The absence of N-WASP caused a significant reduction in the frequencies of actin and Arp2/3 complex accumulations at sites of clathrin-coated pit invagination and vesicle departure. Although N-WASP was not essential for Arp2/3-complex-mediated actin assembly at these sites or for EGF receptor-mediated endocytosis, N-WASP deficiency caused a marked reduction of EGF internalization. We conclude that the assembly of WASP subfamily proteins and associated factors at sites of clathrin-coated pit invagination amplifies actin accumulations at these sites promoting efficient internalization of ligands via clathrin-mediated endocytosis.

Collaboration


Dive into the Theresia E. B. Stradal's collaboration.

Top Co-Authors

Avatar

Klemens Rottner

Braunschweig University of Technology

View shared research outputs
Top Co-Authors

Avatar

Jan Faix

Hannover Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Victor Small

Austrian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge