Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thi Kim Quy Ha is active.

Publication


Featured researches published by Thi Kim Quy Ha.


Journal of Natural Products | 2014

Dammarane Triterpenes as Potential SIRT1 Activators from the Leaves of Panax ginseng

Jun Li Yang; Thi Kim Quy Ha; Basanta Dhodary; Kuk Hwa Kim; Junsoo Park; Chul Ho Lee; Young Choong Kim; Won Keun Oh

During a search for SIRT1 activators originating in nature, three new dammarane triterpenes, 6α,20(S)-dihydroxydammar-3,12-dione-24-ene (1), 6α,20(S),24(S)-trihydroxydammar-3,12-dione-25-ene (2), and 6α,20(S),25-trihydroxydammar-3,12-dione-23-ene (3), as well as two known triterpenes, dammar-20(22),24-diene-3β,6α,12β-triol (4) and 20(S)-ginsenoside Rg3 (5), were isolated from Panax ginseng leaves. Compounds 1 and 3-5 showed potential as SIRT1 activators, as analyzed by in vitro enzyme-based SIRT1-NAD/NADH and SIRT1-p53 luciferase cell-based assays. They were also found to increase the level of NAD(+)/NADH ratio in HEK293 cells. This study presents a new class of chemical entities that may be able to be developed as SIRT1 activators for antiaging and treatment of age-associated diseases.


Journal of Ethnopharmacology | 2016

Antiviral activities of compounds from aerial parts of Salvia plebeia R. Br

Sunghee Bang; Thi Kim Quy Ha; Changyeol Lee; Wei Li; Won-Keun Oh; Sang Hee Shim

ETHNOPHARMACOLOGICAL RELEVANCE Salvia plebeia R. Br. is an edible plant widely spread in many countries. It has been used as a traditional medicine to treat common cold, flu, cough, hepatitis, hemorrhoids, etc. The purpose of the study is to explicate antiviral compounds responsible for its traditional use for the common cold or flu. MATERIALS AND METHODS The methanolic extract of the aerial parts of S. plebeia was extracted with CHCl3, EtOAc, and n-BuOH, successively. The EtOAc and CHCl3 fractions were subjected to a successive of chromatographic method, which led to the isolation of fourteen compounds. Inhibition activities of the isolated compounds were evaluated against influenza A (H1N1) neuraminidase. RESULTS Chemical investigation of the methanolic extracts of S. plebeia resulted in the isolation of two novel benzoylated monoterpene glycosides, named as plebeiosides A (1) and B (2), together with twelve known compounds including four flavonoids (4-5, 7, 10), two sesquiterpenoids (8, 12), four phenolics (9-10, 13-14), a steroid (6), and a triterpenoid (3). Their chemical structures were elucidated based on spectroscopic data and absolute stereochemistries of 1 and 2 were determined by comparison of optical rotations of their hydrolysates with literature values. Compounds 5, 7, 9, and 11 exhibited potent enzymatic inhibition against H1N1 neuraminidase (IC50 values ranging from 11.18±1.73 to 19.83±2.28μM). Furthermore, two flavonoids (5 and 7) and one rosmarinic acid methyl ester (9) reduced cytopathic effects of the H1N1 virus during replication. CONCLUSIONS The antiviral activities of the flavonoids and phenolics isolated from the extracts of S. plebeia supported the traditional application of this medicine on common cold or flu. In this study, benzoylated monoterpene glycosides were first found to exist in this species. Moreover, the present study suggested potential of three compounds (5, 7, and 9) to be new lead structures for the development of new neuraminidase inhibitors in the future.


Fitoterapia | 2016

Antiviral phenolics from the leaves of Cleistocalyx operculatus

Thi Kim Quy Ha; Trong Tuan Dao; Ngoc Hieu Nguyen; Ji-Won Kim; Eunhee Kim; Tae Oh Cho; Won Keun Oh

During the screening program for anti-influenza agents from medicinal plants, the ethanolic extract of Cleistocalyx operculatus leaves was found to exhibit potential neuraminidase (NA) inhibitory activity. Bioassay-directed fractionation led to the isolation of two new acetophenones (1 and 2) and one new flavanone (3), along with six known compounds (4-9). The structures of all isolated compounds were elucidated using various spectroscopic methods and through comparison with the previous literature. Compounds 6 and 8 exhibited strong enzymatic inhibition on various neuraminidases from different influenza viruses, including H1N1, H9N2, novel H1N1, and oseltamivir-resistant novel H1N1 (H274Y mutation) expressed in HEK293 cells (IC50 values ranging from 5.07 ± 0.94 μM to 9.34 ± 2.52 μM, respectively). Kinetic experiments revealed the non-competitive inhibitory mode of both compounds 6 and 8. Furthermore, these flavonoids reduced the cytopathic effect of the H1N1 virus in MDCK cells. The present study suggests the potential of two flavonoids (6 and 8) as new lead compounds for the development of novel NA inhibitors in the future.


Bioorganic & Medicinal Chemistry Letters | 2017

Anthraquinones from Morinda longissima and their insulin mimetic activities via AMP-activated protein kinase (AMPK) activation

Phi-Hung Nguyen; Hong Seok Choi; Thi Kim Quy Ha; Ji Yeon Seo; Jun-Li Yang; Da-Woon Jung; Darren R. Williams; Won-Keun Oh

AMP-activated protein kinase (AMPK) activators are known to increase energy metabolism and to reduce body weight, as well as to improve glucose uptake. During for searching AMPK activators, a new anthraquinone, modasima A (10), along with eighteen known analogues (1-9 and 11-19) were isolated from an ethanol extract of the roots of Morinda longissima Y. Z. Ruan (Rubiaceae). Using the fluorescent tagged glucose analogues, 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxy-D-glucose (2-NBDG), insulin mimetics were screened with compounds 1-19 in 3T3-L1 adipocytes. Among them, compounds 2, 8 and 10 enhanced significantly glucose uptake into adipocytes and up-regulated the phosphorylated AMPK (Thr172) whereas the glucose uptake enhancing activities of compounds 2, 8 and 10 were abrogated by treatment of compound C, an AMPK inhibitor. Taken together, these anthraquinones showed the potential action as insulin mimetic to improve glucose uptake via activation of AMPK.


Molecules | 2016

Protein Tyrosine Phosphatase 1B Inhibitors from the Stems of Akebia quinata

Jin-Pyo An; Thi Kim Quy Ha; Jin Woong Kim; Tae Oh Cho; Won Keun Oh

PTP1B deficiency in mouse mammary tumor virus (MMTV)-NeuNT transgenic mice inhibited the onset of MMTV-NeuNT-evoked breast cancer, while its overexpression was observed in breast cancer. Thus, PTP1B inhibitors are considered chemopreventative agents for breast cancer. As part of our program to find PTP1B inhibitors, one new diterpene glycoside (1) and 13 known compounds (2–14) were isolated from the methanol extract of the stems of Akebia quinata. All isolates were identified based on extensive spectroscopic data analysis, including UV, IR, NMR and MS. Compounds 2, 3, 6, 8 and 11 showed significant inhibitory effects on the PTP1B enzyme, with IC50 values ranging from 4.08 ± 1.09 to 21.80 ± 4.74 μM. PTP1B inhibitors also had concentration-dependent cytotoxic effects on breast cancer cell lines, such as MCF7, MDA-MB-231 and tamoxifen-resistant MCF7 (MCF7/TAMR) (IC50 values ranging from 0.84 ± 0.04 to 7.91 ± 0.39 μM). These results indicate that compounds 6 and 8 from Akebia quinata may be lead compounds acting as anti-breast cancer agents.


Journal of Natural Products | 2017

C-Methylated Flavonoid Glycosides from Pentarhizidium orientale Rhizomes and Their Inhibitory Effects on the H1N1 Influenza Virus

Jungmoo Huh; Thi Kim Quy Ha; Kyo Bin Kang; Ki-Hyun Kim; Won Keun Oh; Jin Woong Kim; Sang Hyun Sung

Thirteen C-methylated flavonoid glycosides (1-13), along with 15 previously known flavonoids (14-28), were isolated from rhizomes of Pentarhizidium orientale. Among these compounds, matteuorienates D-K (1-8) were obtained as analogues of matteuorienates A-C (14-16), which contain a characteristic 3-hydroxy-3-methylglutaryl (HMG) moiety. The structures of 1-13 were characterized by spectroscopic analysis and chemical derivatization. The isolates were evaluated for their antiviral activities against influenza virus (H1N1), with compounds 21, 22, 23, 25, and 26 showing inhibitory effects (IC50 of 23.9-30.3 μM) against neuraminidases.


Bioorganic & Medicinal Chemistry Letters | 2017

PTP1B inhibitors from the seeds of Iris sanguinea and their insulin mimetic activities via AMPK and ACC phosphorylation

Jun Li Yang; Thi Kim Quy Ha; Ba Wool Lee; Jinwoong Kim; Won Keun Oh

To find PTP1B inhibitors from natural products, two new compounds (1 and 2), along with nine known compounds (3-11), were isolated from a methanol-soluble extract of Iris sanguinea seeds. The structures of compounds 1 and 2 were determined based on extensive spectroscopic data analysis including UV, IR, NMR, and MS. The IC50 value of compound 5 on protein tyrosine phosphatase 1B (PTP1B) inhibitory activity is 7.30±0.88µM with a little activity compared to the IC50 values of the tested positive compound. Compound 5 significantly enhanced glucose uptake and activation of pACC, pAMPK and partially Erk1/2 signaling. These results suggest that compound 5 from Iris sanguinea seeds are utilized as both PTP1B inhibitors and regulators of glucose uptake. These beneficial effects could be applied to treat metabolic diseases such as diabetes and obesity.


Journal of Natural Products | 2017

Polyoxygenated Steroids from the Sponge Clathria gombawuiensis

Jung-Kyun Woo; Thi Kim Quy Ha; Dong-Chan Oh; Won-Keun Oh; Ki-Bong Oh; Jongheon Shin

Six new polyoxygenated steroids (1-6) along with clathriol (7) were isolated from the Korean marine sponge Clathria gombawuiensis. Based upon the results of combined spectroscopic analyses, the structures of gombasterols A-F (1-6) were elucidated to be those of highly oxygenated steroids possessing a 3β,4α,6α,7β-tetrahydroxy or equivalent (7β-sodium O-sulfonato for 3) substitution pattern and a C-15 keto group as common structural motifs. The relative and absolute configurations of these steroids, including the rare 14β configuration of 1-4, were determined by a combination of NOESY, J-based analyses, the 2-methoxy-2-(trifluoromethyl)phenylacetic acid (MTPA) method, and X-ray crystallographic analysis. The absolute configuration of 7 was also assigned by these methods. These compounds moderately enhanced 2-deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]-d-glucose (2-NBDG) uptake in differentiated 3T3-L1 adipocytes and phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) in differentiated mouse C2C12 skeletal myoblasts.


Phytochemistry | 2019

Flavone glycosides from Sicyos angulatus and their inhibitory effects on hepatic lipid accumulation

Jin-Pyo An; Lan Huong Dang; Thi Kim Quy Ha; Ha Thanh Tung Pham; Ba-Wool Lee; Chul Ho Lee; Won Keun Oh

A library of extracted natural materials (Korea Bioactive Natural Material Bank) have been screened to discover candidates for the treatment of non-alcoholic liver disease (NAFLD), and the 70% ethanol extract of Sicyos angulatus was found to inhibit hepatic lipid accumulation. Bioassay-guided fractionation of this bioactive extract yielded five previously undescribed flavonoid glycosides and one previously undescribed flavonolignan glycoside along with seven known flavonoid glycosides. The chemical structures of these compounds were elucidated by a combination of extensive spectroscopic analysis, including MS, NMR and UV techniques. Eight compounds of all isolated compounds showed inhibitory effects on the lipid accumulation induced by high concentrations of palmitic acid and glucose in HepG2 cells. Four selected compounds were tested for lipid content in a dose-dependent manner (10, 20 and 40 μM), and among those compounds, kaempferol 3-O-β-d-glucopyranosyl-7-O-α-l-rhamnopyranoside showed the strongest inhibition of hepatic lipid production in HepG2 cells. In an oil-red O staining assay, five compounds were shown to reduce hepatic lipid accumulation better than what was observed in the vehicle control group. The present study suggests a new class of chemical entities for developing bioactive agents for the treatment of diseases caused by fat accumulation in the liver.


Phytochemistry | 2018

Hypoglycemic triterpenes from Gynostemma pentaphyllum

Jun Wang; Thi Kim Quy Ha; Yan-Ping Shi; Won Keun Oh; Jun-Li Yang

To search for bioactive gypenosides and their analogues, a saponin enriched fraction and its hydrolyzate from Gynostemma pentaphyllum were phytochemically investigated. Fractionation by diverse chromatographic methods, including HPLC, Sephadex LH-20, silica gel, and C18 reverse phase silica gel, led to the isolation and purification of twelve triterpenes, including five undescribed and seven known. The chemical structures of all compounds were determined as analyzed by nuclear magnetic resonance (NMR), high resolution mass spectrometry (HR-MS), infrared spectrum (IR), optical rotation, and chemical transformations. Among all isolates, nine compounds possessed a rare dammarane triterpenoid framework with A-ring modified. The relative configurations of three compounds were determined by 2D NMR for the first time. The absolute configurations of four compounds were determined by the modified Moshers method. Two of all isolated compounds significantly enhanced 2-deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]-D-glucose (2-NBDG) uptake and Glucose Transporter 4 (GLUT4) translocation via activating the AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) signaling pathway. This study provided the potential candidates for the development of antidiabetic agents.

Collaboration


Dive into the Thi Kim Quy Ha's collaboration.

Top Co-Authors

Avatar

Won Keun Oh

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Chul Ho Lee

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Jun-Li Yang

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Basanta Dhodary

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Jun Li Yang

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Won-Keun Oh

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Changyeol Lee

Duksung Women's University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge