Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thi Nguyen is active.

Publication


Featured researches published by Thi Nguyen.


Science | 2014

Antibody landscapes after influenza virus infection or vaccination

Judith M. Fonville; S. H. Wilks; Sarah Linda James; Annette Fox; Mario Ventresca; Malet Aban; L. Xue; T. C. Jones; N M H Le; Q T Pham; N D Tran; Y. Wong; Ana Mosterin; Leah C. Katzelnick; David Labonte; Thuy Le; G. van der Net; E. Skepner; Colin A. Russell; T. D. Kaplan; N. Masurel; J. C. de Jong; A. Palache; Walter Beyer; Q M Le; Thi Nguyen; Heiman Wertheim; Aeron C. Hurt; Albert D. M. E. Osterhaus; Ian G. Barr

We introduce the antibody landscape, a method for the quantitative analysis of antibody-mediated immunity to antigenically variable pathogens, achieved by accounting for antigenic variation among pathogen strains. We generated antibody landscapes to study immune profiles covering 43 years of influenza A/H3N2 virus evolution for 69 individuals monitored for infection over 6 years and for 225 individuals pre- and postvaccination. Upon infection and vaccination, titers increased broadly, including previously encountered viruses far beyond the extent of cross-reactivity observed after a primary infection. We explored implications for vaccination and found that the use of an antigenically advanced virus had the dual benefit of inducing antibodies against both advanced and previous antigenic clusters. These results indicate that preemptive vaccine updates may improve influenza vaccine efficacy in previously exposed individuals. Preemptive vaccine updates may substantially improve influenza vaccine efficacy in previously exposed individuals. [Also see Perspective by Lessler] Hills and valleys of influenza infection Each one of us may encounter several different strains of the ever-changing influenza virus during a lifetime. Scientists can now summarize such histories of infection over a lifetime of exposure. Fonville et al. visualize the interplay between protective responses and the evasive influenza virus by a technique called antibody landscape modeling (see the Perspective by Lessler). Landscapes reveal how exposure to new strains of the virus boost immune responses and indicate possibilities for optimizing future vaccination programs. Science, this issue p. 996; see also p. 919


Proceedings of the National Academy of Sciences of the United States of America | 2014

Preexisting CD8+ T-cell immunity to the H7N9 influenza A virus varies across ethnicities

Sergio Quiñones-Parra; Emma J. Grant; Liyen Loh; Thi Nguyen; Kristy-Anne Campbell; Steven Y. C. Tong; Adrian Miller; Peter C. Doherty; Dhanasekaran Vijaykrishna; Jamie Rossjohn; Stephanie Gras; Katherine Kedzierska

Significance The severity of the novel H7N9 influenza A virus (IAV) and the lack of neutralizing antibodies raise real pandemic concerns. In this scenario, CD8+ T lymphocytes (CTLs) may provide a layer of protection against the H7N9 virus. Our study dissects the extent of preexisting CTL immunity with the potential to respond to H7N9. We identified conserved immunogenic peptides with the capacity to elicit robust CTL responses against any human IAV, including the H7N9 virus, as well as the mutations that abolish CTL recognition. The human leukocyte antigen class I molecules that present these peptides vary in prevalence depending on the ethnicity. Such analyses found that the Alaskan and Australian Indigenous people may be particularly vulnerable to the H7N9 influenza disease. The absence of preexisting neutralizing antibodies specific for the novel A (H7N9) influenza virus indicates a lack of prior human exposure. As influenza A virus–specific CD8+ T lymphocytes (CTLs) can be broadly cross-reactive, we tested whether immunogenic peptides derived from H7N9 might be recognized by memory CTLs established following infection with other influenza strains. Probing across multiple ethnicities, we identified 32 conserved epitopes derived from the nucleoprotein (NP) and matrix-1 (M1) proteins. These NP and M1 peptides are presented by HLAs prevalent in 16–57% of individuals. Remarkably, some HLA alleles (A*0201, A*0301, B*5701, B*1801, and B*0801) elicit robust CTL responses against any human influenza A virus, including H7N9, whereas ethnicities where HLA-A*0101, A*6801, B*1501, and A*2402 are prominent, show limited CTL response profiles. By this criterion, some groups, especially the Alaskan and Australian Indigenous peoples, would be particularly vulnerable to H7N9 infection. This dissection of CTL-mediated immunity to H7N9 thus suggests strategies for both vaccine delivery and development.


Journal of Immunology | 2014

Recognition of Distinct Cross-Reactive Virus-Specific CD8+ T Cells Reveals a Unique TCR Signature in a Clinical Setting

Thi Nguyen; Louise C. Rowntree; Daniel G. Pellicci; Nicola L. Bird; Andreas Handel; Lars Kjer-Nielsen; Katherine Kedzierska; Tom Kotsimbos; Nicole A. Mifsud

Human CMV still remains problematic in immunocompromised patients, particularly after solid organ transplantation. CMV primary disease and reactivation greatly increase the risks associated with incidences of chronic allograft rejection and decreased survival in transplant recipients. But whether this is due to direct viral effects, indirect viral effects including cross-reactive antiviral T cell immunopathology, or a combination of both remains undetermined. In this article, we report the novel TCR signature of cross-reactive HLA-A*02:01 (A2) CMV (NLVPMVATV [NLV])–specific CD8+ T cells recognizing a specific array of HLA-B27 alleles using technical advancements that combine both IFN-γ secretion and multiplex nested RT-PCR for determining paired CDR3α/β sequences from a single cell. This study represents the first evidence, to our knowledge, of the same A2-restricted cross-reactive NLV-specific TCR-α/β signature (TRAV3TRAJ31_TRBV12-4TRBJ1-1) in two genetically distinct individuals. Longitudinal posttransplant monitoring of a lung transplant recipient (A2, CMV seropositive) who received a HLA-B27 bilateral lung allograft showed a dynamic expansion of the cross-reactive NLV-specific TCR repertoire before CMV reactivation. After resolution of the active viral infection, the frequency of cross-reactive NLV-specific CD8+ T cells reduced to previremia levels, thereby demonstrating immune modulation of the T cell repertoire due to antigenic pressure. The dynamic changes in TCR repertoire, at a time when CMV reactivation was subclinical, illustrates that prospective monitoring in susceptible patients can reveal nuances in immune profiles that may be clinically relevant.


Transplantation | 2010

Quantitative and functional diversity of cross-reactive EBV-specific CD8+ T cells in a longitudinal study cohort of lung transplant recipients.

Nicole A. Mifsud; Thi Nguyen; Brian D. Tait; Tom Kotsimbos

Background. Cross-reactive antiviral memory T cells constitute a significant proportion of the alloresponse, potentially playing a pivotal role in adverse posttransplant outcomes in human leukocyte antigen (HLA)-mismatched allografts. We explored the longitudinal dynamics of cross-reactive HLA-B8-restricted Epstein-Barr virus-specific CD8+ T cells directed toward the EBNA3A epitope FLRGRAYGL (FLR) in lung transplant recipients (LTRs) to determine whether their corecognition of HLA-B*4402 expressed on the allograft contributed to poorer posttransplant outcomes. Methods. Cross-reactive FLR-specific CD8+ T cells were measured in the peripheral blood mononuclear cells and bronchoalveolar lavage fluid in 11 HLA-B8+ LTR, who had received HLA-B44+ lung allograft, after in vitro autologous (FLR pulsed) or allogeneic stimulation by multiparameter flow cytometry. Results. FLR-specific CD8+ T cells were detectable ex vivo and after 13 days following in vitro peptide stimulation of peripheral blood mononuclear cells. Individual LTR and demonstrated diverse functional profiles of either cytokine production and/or cytotoxic potential (interferon-g+, interferon-g+CD107a+ and CD107a+ subsets). However, cells isolated from bronchoalveolar lavage exhibited a skewed functional phenotype toward CD107a expression alone, indicating cytotoxic-producing but not cytokine-producing capabilities. In addition, our findings suggested that the presence of cross-reactive FLR-specific CD8+ T cells may influence the alloreactive hierarchy directed against the allograft, although they were not associated with poorer short- or long-term clinical outcomes in the absence of Epstein-Barr virus reactivation and in the setting of current immunosuppression and antiviral prophylaxis protocols. Conclusion. We report, for the first time, the longitudinal measurement of cross-reactive FLR-specific CD8+ T cells within a clinical transplantation framework.


PLOS ONE | 2013

Impact of Commonly Used Transplant Immunosuppressive Drugs on Human NK Cell Function Is Dependent upon Stimulation Condition

Aislin C. Meehan; Nicole A. Mifsud; Thi Nguyen; B. Levvey; G. Snell; Tom Kotsimbos; Glen P. Westall

Lung transplantation is a recognised treatment for patients with end stage pulmonary disease. Transplant recipients receive life-long administration of immunosuppressive drugs that target T cell mediated graft rejection. However little is known of the impact on NK cells, which have the potential to be alloreactive in response to HLA-mismatched ligands on the lung allograft and in doing so, may impact negatively on allograft survival. NK cells from 20 healthy controls were assessed in response to Cyclosporine A, Mycophenolic acid (MPA; active form of Mycophenolate mofetil) and Prednisolone at a range of concentrations. The impact of these clinically used immunosuppressive drugs on cytotoxicity (measured by CD107a expression), IFN-γ production and CFSE proliferation was assessed in response to various stimuli including MHC class-I negative cell lines, IL-2/IL-12 cytokines and PMA/Ionomycin. Treatment with MPA and Prednisolone revealed significantly reduced CD107a expression in response to cell line stimulation. In comparison, addition of MPA and Cyclosporine A displayed reduced CD107a expression and IFN-γ production following PMA/Ionomycin stimulation. Diminished proliferation was observed in response to treatment with each drug. Additional functional inhibitors (LY294002, PD98059, Rottlerin, Rapamycin) were used to elucidate intracellular pathways of NK cell activation in response to stimulation with K562 or PMA-I. CD107a expression was significantly decreased with the addition of PD98059 following K562 stimulation. Similarly, CD107a expression significantly decreased following PMA-I stimulation with the addition of LY294002, PD98059 and Rottlerin. Ten lung transplant patients, not receiving immunosuppressive drugs pre-transplant, were assessed for longitudinal changes post-transplant in relation to the administration of immunosuppressive drugs. Individual patient dynamics revealed different longitudinal patterns of NK cell function post-transplantation. These results provide mechanistic insights into pathways of NK cell activation and show commonly administered transplant immunosuppression agents and clinical rejection/infection events have differential effects on NK cell function that may impact the immune response following lung transplantation.


PLOS ONE | 2013

Cross-reactive anti-viral T cells increase prior to an episode of viral reactivation post human lung transplantation

Thi Nguyen; Glen P. Westall; Tara E. Bull; Aislin C. Meehan; Nicole A. Mifsud; Tom Kotsimbos

Human Cytomegalovirus (CMV) reactivation continues to influence lung transplant outcomes. Cross-reactivity of anti-viral memory T cells against donor human leukocyte antigens (HLA) may be a contributing factor. We identified cross-reactive HLA-A*02:01-restricted CMV-specific cytotoxic T lymphocytes (CTL) co-recognizing the NLVPMVATV (NLV) epitope and HLA-B27. NLV-specific CD8+ T cells were expanded for 13 days from 14 HLA-A*02:01/CMV seropositive healthy donors and 11 lung transplant recipients (LTR) then assessed for the production of IFN-γ and CD107a expression in response to 19 cell lines expressing either single HLA-A or -B class I molecules. In one healthy individual, we observed functional and proliferative cross-reactivity in response to B*27:05 alloantigen, representing approximately 5% of the NLV-specific CTL population. Similar patterns were also observed in one LTR receiving a B27 allograft, revealing that the cross-reactive NLV-specific CTL gradually increased (days 13–193 post-transplant) before a CMV reactivation event (day 270) and reduced to basal levels following viral clearance (day 909). Lung function remained stable with no acute rejection episodes being reported up to 3 years post-transplant. Individualized immunological monitoring of cross-reactive anti-viral T cells will provide further insights into their effects on the allograft and an opportunity to predict sub-clinical CMV reactivation events and immunopathological complications.


Journal of Immunology | 2009

Killer Ig-Like Receptor Ligand Mismatch Directs NK Cell Expansion In Vitro

Mingus J. Rose; Andrew G. Brooks; Lisbeth A. Stewart; Thi Nguyen; Anthony P. Schwarer

NK cell alloreactivity is governed largely through failure to detect self-HLA class I ligands by the clonally distributed inhibitory killer Ig-like receptors (KIR) expressed on the NK cell surface. In this study, we investigated the extent to which HLA class I-KIR interactions influence human NK cell proliferation in the allogeneic setting. NK cells were cultured with feeder cells either matched or mismatched for inhibitory KIR ligands, the latter lacking one or more ligands present in the NK cell donor. In postculture cytotoxicity assays, the ability of polyclonal NK cells to kill KIR ligand-mismatched targets was enhanced by exposure to appropriately mismatched feeder cells in prior culture. This corresponded with an increased frequency of postculture donor NK cells expressing a given inhibitory KIR if the allogeneic feeder cells used in the culture lacked its ligand. Similar skewing of KIR distribution was seen in clonally expanded NK cells. Finally, a flow cytometry-based proliferation assay was used to show KIR-specific NK cell division in response to missing self. The findings demonstrate that KIR distribution among a population of alloresponding peripheral blood NK cells is shaped by the HLA class I environment.


Journal of Clinical Investigation | 2018

Influenza-specific lung-resident memory T cells are proliferative and polyfunctional and maintain diverse TCR profiles

Angela Pizzolla; Thi Nguyen; Sneha Sant; Jade Jaffar; Tom Loudovaris; Stuart I. Mannering; Paul G. Thomas; Glen P. Westall; Katherine Kedzierska; Linda M. Wakim

The human lung harbors a large population of resident memory T cells (Trm cells). These cells are perfectly positioned to mediate rapid protection against respiratory pathogens such as influenza virus, a highly contagious respiratory pathogen that continues to be a major public health burden. Animal models show that influenza-specific lung CD8+ Trm cells are indispensable for crossprotection against pulmonary infection with different influenza virus strains. However, it is not known whether influenza-specific CD8+ Trm cells present within the human lung have the same critical role in modulating the course of the disease. Here, we showed that human lung contains a population of CD8+ Trm cells that are highly proliferative and have polyfunctional progeny. We observed that different influenza virus–specific CD8+ T cell specificities differentiated into Trm cells with varying efficiencies and that the size of the influenza-specific CD8+ T cell population persisting in the lung directly correlated with the efficiency of differentiation into Trm cells. To our knowledge, we provide the first ex vivo dissection of paired T cell receptor (TCR) repertoires of human influenza–specific CD8+ Trm cells. Our data reveal diverse TCR profiles within the human lung Trm cells and a high degree of clonal sharing with other CD8+ T cell populations, a feature important for effective T cell function and protection against the generation of viral-escape mutants.


Tissue Antigens | 2013

Endogenous-peptide-dependent alloreactivity: new scientific insights and clinical implications

Lloyd D'Orsogna; Thi Nguyen; Frans H.J. Claas; C. Witt; Nicole A. Mifsud

T-cell alloreactivity is generated via immune responsiveness directed against allogeneic (allo) human leucocyte antigen (HLA) molecules. Whilst the alloresponse is of extraordinary potency and frequency, it has often been assumed to be less peptide-specific than conventional T-cell reactivity. Recently, several human studies have shown that both alloreactive CD8(+) and CD4(+) T cells exhibit exquisite allo-HLA and endogenous peptide specificity that has also underpinned tissue-specific allorecognition. In this review, we summarize former and recent scientific evidence in support of endogenous peptide (self-peptide)-dependence of T-cell alloreactivity. The clinical implications of these findings will be discussed in the context of both solid organ transplantation and haematopoietic stem cell transplantation (HSCT). Insights into the understanding of the molecular basis of T-cell allorecognition will probably translate into improved allograft survival outcomes, lower frequencies of graft vs host disease and could potentially be exploited for selective graft vs leukaemia effect to improve clinical outcomes following HSCT.


Immunology and Cell Biology | 2010

Cross-presentation of HCMV chimeric protein enables generation and measurement of polyclonal T cells

Thi Nguyen; Lucy C. Sullivan; Tom Kotsimbos; Anthony P. Schwarer; Nicole A. Mifsud

CD8+ T cell immunity has a critical function in controlling human cytomegalovirus (HCMV) infection. In immunocompromized individuals, HCMV reactivation or disease can lead to increased morbidity and mortality, particularly in transplant recipients. In this setting, adoptive transfer of HCMV‐specific CD8+ T cells is a promising vaccine strategy to restore viral immunity, with most clinical approaches focussing on the use of peptides for the generation of single epitope‐specific CD8+ T cells. We show that using an IE1‐pp65 chimeric protein as the antigen source promotes effective cross‐presentation, by monocyte‐derived dendritic cells (MoDCs), to generate polyclonal CD8+ T cell epitopes. By exploring human leukocyte antigen (HLA)‐restricted immunodominance hierarchies both within and across two immunodominant proteins, we show that HLA‐B7 epitopes elicit higher CD8+ T cell responses compared with HLA‐A1, ‐A2 or ‐B8. This study provides important evidence highlighting both the efficacy of the IE1‐pp65 chimeric protein and the importance of immunodominance in designing future therapeutic vaccines.

Collaboration


Dive into the Thi Nguyen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge