Thiago J. Izzo
Universidade Federal de Mato Grosso
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Thiago J. Izzo.
Current Biology | 2007
Paulo R. Guimarães; Victor Rico-Gray; Paulo S. Oliveira; Thiago J. Izzo; Sérgio F. dos Reis; John N. Thompson
The structure of mutualistic networks provides clues to processes shaping biodiversity [1-10]. Among them, interaction intimacy, the degree of biological association between partners, leads to differences in specialization patterns [4, 11] and might affect network organization [12]. Here, we investigated potential consequences of interaction intimacy for the structure and coevolution of mutualistic networks. From observed processes of selection on mutualistic interactions, it is expected that symbiotic interactions (high-interaction intimacy) will form species-poor networks characterized by compartmentalization [12, 13], whereas nonsymbiotic interactions (low intimacy) will lead to species-rich, nested networks in which there is a core of generalists and specialists often interact with generalists [3, 5, 7, 12, 14]. We demonstrated an association between interaction intimacy and structure in 19 ant-plant mutualistic networks. Through numerical simulations, we found that network structure of different forms of mutualism affects evolutionary change in distinct ways. Change in one species affects primarily one mutualistic partner in symbiotic interactions but might affect multiple partners in nonsymbiotic interactions. We hypothesize that coevolution in symbiotic interactions is characterized by frequent reciprocal changes between few partners, but coevolution in nonsymbiotic networks might show rare bursts of changes in which many species respond to evolutionary changes in a single species.
Ecology | 2014
Wesley Dáttilo; Flavia Maria Darcie Marquitti; Paulo R. Guimarães; Thiago J. Izzo
Knowledge of the mechanisms that shape biodiversity is essential to understand the ecological and evolutionary dynamics of interacting species. Recent studies posit that most of the organization of mutualistic networks is shaped by differences in species abundance among interacting species. In this study, we examined the mutualism involving plants with extrafloral nectaries and their associated ants. We show empirically that the difference in abundance among ants on vegetation partially explains the network structure of mutualistic interactions and that it is independent of ant species compositions: an ant species that is abundant usually interacts with more plant species. Moreover, nested networks are generated by simple variation in ant abundance on foliage. However, in ant-plant mutualistic networks, nestedness was higher than in networks describing the occurrence of ants on plants without a food resource. Additionally, the plant and ant species with the highest number of interactions within these networks interacted more among themselves than expected under the assumption of an abundance-based, random mixing of individuals. We hypothesize that the dominance of these ant species occurs because these ants are able to outcompete other ant species when feeding on extrafloral nectaries and because of the presence of ecophysiological adaptations to utilize liquid food.
PLOS ONE | 2014
Wesley Dáttilo; Roberth Fagundes; Carlos A. Q. Gurka; Mara S. A. Silva; Marisa C. L. Vieira; Thiago J. Izzo; Cecilia Díaz-Castelazo; Kleber Del-Claro
Despite the importance and increasing knowledge of ecological networks, sampling effort and intrapopulation variation has been widely overlooked. Using continuous daily sampling of ants visiting three plant species in the Brazilian Neotropical savanna, we evaluated for the first time the topological structure over 24 h and species-area relationships (based on the number of extrafloral nectaries available) in individual-based ant-plant networks. We observed that diurnal and nocturnal ant-plant networks exhibited the same pattern of interactions: a nested and non-modular pattern and an average level of network specialization. Despite the high similarity in the ants’ composition between the two collection periods, ant species found in the central core of highly interacting species totally changed between diurnal and nocturnal sampling for all plant species. In other words, this “night-turnover” suggests that the ecological dynamics of these ant-plant interactions can be temporally partitioned (day and night) at a small spatial scale. Thus, it is possible that in some cases processes shaping mutualistic networks formed by protective ants and plants may be underestimated by diurnal sampling alone. Moreover, we did not observe any effect of the number of extrafloral nectaries on ant richness and their foraging on such plants in any of the studied ant-plant networks. We hypothesize that competitively superior ants could monopolize individual plants and allow the coexistence of only a few other ant species, however, other alternative hypotheses are also discussed. Thus, sampling period and species-area relationship produces basic information that increases our confidence in how individual-based ant-plant networks are structured, and the need to consider nocturnal records in ant-plant network sampling design so as to decrease inappropriate inferences.
Malaria Journal | 2013
Claudia M Ríos-Velásquez; Keillen M Martins-Campos; Rejane C Simões; Thiago J. Izzo; Edineuza V dos Santos; Felipe Ac Pessoa; José B. P. Lima; Wuelton Marcelo Monteiro; Nágila Fc Secundino; Marcus Vg Lacerda; Wanderli Pedro Tadei; Paulo Fp Pimenta
BackgroundAnopheles darlingi is the major malaria vector in countries located in the Amazon region. Anopheles aquasalis and Anopheles albitarsis s.l. are also proven vectors in this region. Anopheles nuneztovari s.l. and Anopheles triannulatus s.l. were found infected with Plasmodium vivax; however, their status as vectors is not yet well defined. Knowledge of susceptibility of Amazon anopheline populations to Plasmodium infection is necessary to better understand their vector capacity. Laboratory colonization of An. darlingi, the main Amazon vector, has proven to be difficult and presently An. aquasalis is the only available autonomous colony.MethodsLarvae of An. darlingi, An. albitarsis s.l., An. nuneztovari s.l. and An. triannulatus s.l. were collected in the field and reared until adult stage. Adults of An. aquasalis were obtained from a well-established colony. Mosquitoes were blood-fed using a membrane-feeding device containing infected blood from malarial patients.The infection of the distinct Anopheles species was evaluated by the impact variance of the following parameters: (a) parasitaemia density; (b) blood serum inactivation of the infective bloodmeal; (c) influence of gametocyte number on infection rates and number of oocysts. The goal of this work was to compare the susceptibility to P. vivax of four field-collected Anopheles species with colonized An. aquasalis.ResultsAll Anopheles species tested were susceptible to P. vivax infection, nevertheless the proportion of infected mosquitoes and the infection intensity measured by oocyst number varied significantly among species. Inactivation of the blood serum prior to mosquito feeding increased infection rates in An. darlingi and An. triannulatus s.l., but was diminished in An. albitarsis s.l. and An. aquasalis. There was a positive correlation between gametocyte density and the infection rate in all tests (Z = −8.37; p < 0.001) but varied among the mosquito species. Anopheles albitarsis s.l., An. aquasalis and An. nuneztovari s.l. had higher infection rates than An. darlingi.ConclusionAll field-collected Anopheles species, as well as colonized An. aquasalis are susceptible to experimental P. vivax infections by membrane feeding assays. Anopheles darlingi, An. albitarsis s.l. and An. aquasalis are very susceptible to P. vivax infection. However, colonized An. aquasalis mosquitoes showed the higher infection intensity represented by infection rate and oocyst numbers. This study is the first to characterize experimental development of Plasmodium infections in Amazon Anopheles vectors and also to endorse that P. vivax infection of colonized An. aquasalis is a feasible laboratory model.
Agroforestry Systems | 2012
Wesley Dáttilo; Rodrigo Lemes Martins; Vera Uhde; Janaina da Costa de Noronha; Fernando P. Florêncio; Thiago J. Izzo
The fruit production of flowering plants critically depends on the pollination services provided by animals that compete for flower resources. The output of competitive interactions between ants and bees for inflorescences of jambolan Syzygium jambolanum (Myrtaceae) in an agroforestry system in Brazilian Meridional Amazonian are an interesting system of investigation due the possibility to control variables experimentally. In 20 S. jambolanum individuals we performed 300 treatments in different inflorescences of two strata (upper and lower) as follows: (1) ants exclusion, (2) bees exclusion, and (3) control group where ants and bees could access the inflorescences. There was no difference in the number of inflorescences, volume of nectar and sugar concentration between the strata. Also the visitors considered are distributed equally in the tree’s stratum. When bees were prevented from access the inflorescences, ants dominated more inflorescences only in the lower stratum. On the contrary, when ants were excluded, bees visited more inflorescences only in the upper stratum. We conclude that ants prevent the access to bees and vice versa as the result of different ability of resource utilization and foraging strategies. Thus, preventing the access of ants to the floral nectar could increase the level of nectar available to pollinators of S. jambolanum, thereby increasing productivity and reducing economic losses.
Acta Amazonica | 2008
Rafael Arruda; Domingos de Jesus Rodrigues; Thiago J. Izzo
Modeling clays have been used in several ecological experiments and have proved to be an important tool to variables control. The objective of our study was to determine if fruit color in isolated and grouped displays influences the fruit selection by birds in the field using artificial fruits. Data were collected in six plots distributed homogeneously in 3 km long trails with a minimum distance of 0.5 km. We used a paired experimental design to establish our experiments, so that all treatments were available to the local bird community in each plot. Overall, red was more pecked than brown and white. Isolated red and brown displays were significantly more pecked than others display. Even though our study was conducted in small spatial scales, artificial fruits appeared to be efficient in register fruit consumption attempts by bird. Although inconclusive about selective forces that sharp the dynamics of fruit color polymorphisms and choice by frugivorous birds, our findings corroborate recent studies wherein birds showed preferences by high- over low-contrast fruit signals.
Acta Amazonica | 2012
Ricardo Eduardo Vicente; Wesley Dáttilo; Thiago J. Izzo
In this study we present a new record of a plant-animal interaction: the mutualistic relationship between the specialist plant-ant Myrcidris epicharis Ward, 1990 (Pseudomyrmecinae) and its myrmecophyte host Myrcia madida McVaugh (Myrtaceae). We observed more than 50 individuals of M. madida occupied by M. epicharis in islands and margins of the Juruena River, in Cotriguacu, Mato Grosso, Brazil (Meridional Amazon). We discuss a possible distribution of this symbiotic interaction throughout all the riparian forest of the Amazon River basin and its consequence to coevolution of the system.
Acta Amazonica | 2003
Gustavo Schwartz; Natalia Hanazaki; Marivana Borges Silva; Thiago J. Izzo; María E. P. Bejar; Mariana R. Mesquita; G. Wilson Fernandes
Stressed plants are generally more attacked by galling insects. In this study we investigated the relationship between population abundance and species richness of galling insects on the tree Alchornea castaneaefolia A. JUSS. (Euphorbiaceae), submited to stress induced by the hemiparasite Psittacanthus sp. (Loranthaceae) in the Amazon, Brazil. Branches of A. castaneaefolia attacked by the hemiparasite were more heavily infested by galling insects than non-attacked branches. The field observations partially corroborate the hypothesis that there would be an optimal level of host-plant stress for galling insect establishment.
Acta Amazonica | 2011
Thiago J. Izzo; Adarilda Peneti-Benelli
The benefits obtained by an organism when involved in a mutualistic interaction vary depending on environmental factors, as well as among the identity of the involved species. In this study, we showed that four ant species, Crematogaster brasiliensis, Allomerus octoarticulatus, and two unidentified Azteca species can be found associated to the myrmecophite Cordia nodosa in riparian forests in the South of Amazonia. This composition of ant-associated species is more similar in forests of Andean Amazon than in Central Amazonia. The colonization of an ant colony on C. nodosa seems to be vital in order to decrease herbivory, as increased the probability of a plant sets fruits. Moreover, even though we did not find significant differences in herbivory among plants colonized by different ant species, the probability of a plant produces fruits is much lower when it is colonized by Allomerus ants. Overall, this study shows that C. nodosa depends on ants to reproduce. However, based on other empirical studies across the Amazon, our results also suggest that Allomerus ants can act as flower castrator, acting as a parasite over its geographic range.
Acta Amazonica | 2006
Jansen Fernandes Medeiros; Victor Py-Daniel; Thiago J. Izzo
We studied the influence of climatic parameters in the daily haematophagic activity of Cerqueirellum argentiscutum from September/1999 to August/2000. The bite activity observed was different according to the annual rain precipitation (dry and rainy seasons). Humidity and temperature were the factors that most influenced it in both periods. During the dry season, it was greater in the beginning of the morning, showing a positive association with the humidity. However, during the rainy season, it was negatively related to that same factor. When wind speed was higher than 10 Km.h-1, it was reduced abruptly. Light intensity, atmospheric pressure and cloudiness seemed to act as secondary factors in the daily abundance of C. argentiscutum.