Thiago L. Costa
University of São Paulo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Thiago L. Costa.
PLOS ONE | 2012
Thiago L. Costa; Mirella Telles Salgueiro Barboni; Ana Laura de Araújo Moura; Daniela Maria Oliveira Bonci; Mirella Gualtieri; Luiz Carlos L. Silveira; Dora Fix Ventura
The purpose of this study was to evaluate the visual outcome of chronic occupational exposure to a mixture of organic solvents by measuring color discrimination, achromatic contrast sensitivity and visual fields in a group of gas station workers. We tested 25 workers (20 males) and 25 controls with no history of chronic exposure to solvents (10 males). All participants had normal ophthalmologic exams. Subjects had worked in gas stations on an average of 9.6±6.2 years. Color vision was evaluated with the Lanthony D15d and Cambridge Colour Test (CCT). Visual field assessment consisted of white-on-white 24–2 automatic perimetry (Humphrey II-750i). Contrast sensitivity was measured for sinusoidal gratings of 0.2, 0.5, 1.0, 2.0, 5.0, 10.0 and 20.0 cycles per degree (cpd). Results from both groups were compared using the Mann–Whitney U test. The number of errors in the D15d was higher for workers relative to controls (p<0.01). Their CCT color discrimination thresholds were elevated compared to the control group along the protan, deutan and tritan confusion axes (p<0.01), and their ellipse area and ellipticity were higher (p<0.01). Genetic analysis of subjects with very elevated color discrimination thresholds excluded congenital causes for the visual losses. Automated perimetry thresholds showed elevation in the 9°, 15° and 21° of eccentricity (p<0.01) and in MD and PSD indexes (p<0.01). Contrast sensitivity losses were found for all spatial frequencies measured (p<0.01) except for 0.5 cpd. Significant correlation was found between previous working years and deutan axis thresholds (rho = 0.59; p<0.05), indexes of the Lanthony D15d (rho = 0.52; p<0.05), perimetry results in the fovea (rho = −0.51; p<0.05) and at 3, 9 and 15 degrees of eccentricity (rho = −0.46; p<0.05). Extensive and diffuse visual changes were found, suggesting that specific occupational limits should be created.
Frontiers in Psychiatry | 2012
Thiago L. Costa; Balázs Nagy; Mirella Telles Salgueiro Barboni; Paulo S. Boggio; Dora Fix Ventura
Previous research showed that transcranial direct current stimulation (tDCS) can modulate visual cortex excitability. However, there is no experiment on the effects of tDCS on color perception to date. The present study aimed to investigate the effects of tDCS on color discrimination tasks. Fifteen healthy subjects (mean age of 25.6 ± 4.4 years) were tested with Cambridge Color Test 2.0 (Trivector and ellipses protocols) and a Forced-choice Spatial Color Contrast Sensitivity task (vertical red-green sinusoidal grating) while receiving tDCS. Anodal, cathodal, and sham tDCS were delivered at Oz for 22 min using two square electrodes (25 cm2 with a current of 1.5 mA) in sessions separated by 7 days. Anodal tDCS significantly increased tritan sensitivity (p < 0.01) and had no significant effect on protan, deutan, or red-green grating discrimination. The effects on the tritan discrimination returned to baseline after 15 min (p < 0.01). Cathodal tDCS reduced the sensitivity in the deutan axis and increased sensitivity in the tritan axis (p < 0.05). The lack of anodal tDCS effects in the protan, deutan, and red-green grating sensitivities could be explained by a “ceiling effect” since adults in this age range tend to have optimal color discrimination performance for these hues. The differential effects of cathodal tDCS on tritan and deutan sensitivities and the absence of the proposed ceiling effects for the tritan axes might be explained by Parvocellular (P) and Koniocellular (K) systems with regard to their functional, physiological, and anatomical differences. The results also support the existence of a systematic segregation of P and K color-coding cells in V1. Future research and possible clinical implications are discussed.
Neuropsychologia | 2015
Thiago L. Costa; Ana Luiza Costa Zaninotto; Gláucia Rosana Guerra Benute; Wellingson Silva Paiva; Johan Wagemans; Paulo S. Boggio
Traumatic brain injury (TBI) is a prevalent condition and there is limited visual perception research with this population. Here, we investigated perceptual organization changes in a rather homogeneous sample of closed head TBI outpatients with diffuse axonal injury only and no other known comorbidities. Patients had normal or corrected visual acuity. Perceptual organization was measured with the Leuven Perceptual Organization Screening Test (L-POST), a coherent motion task (CM) and the Leuven Embedded Figures Test (L-EFT). These tests were chosen to screen for deficits in different aspects of perceptual organization (L-POST), to evaluate local and global processing (L-EFT) and grouping in a dynamic set of stimuli (CM). TBI patients were significantly impaired compared to controls in all measures for both response time and accuracy, except for CM thresholds and object recognition subtests. The TBI group was similarly affected in all aspects of the L-EFT. TBI was also similarly affected in all perceptual factors of the L-POST. No significant correlations were found between scores and time post-injury, except for CM thresholds (rs=-0.74), which might explain the lack of group-level differences. The only score significantly correlated to IQ was L-EFT response time (rs=-0.67). These findings demonstrate that perceptual organization is diffusely affected in TBI and this effect has no substantial correlations with IQ. As many of the neuropsychological tests used to measure different cognitive functions involve some level of visual discrimination and perceptual organization demands, these results must be taken into account in the general neuropsychological evaluation of TBI patients.
Experimental Brain Research | 2015
Thiago L. Costa; Mirella Gualtieri; Mirella Telles Salgueiro Barboni; Rafael K. Katayama; Paulo S. Boggio; Dora Fix Ventura
Recent research suggested that transcranial direct current stimulation (tDCS) can affect visual processing and that it can be useful in visual rehabilitation. Nevertheless, there are still few investigations on the subject. tDCS selectivity and the extent of its outcomes on visual perception are still to be assessed. Here, we investigate whether central and peripheral visual fields are equally affected by tDCS. We also tried to reproduce a previous work that has evaluated tDCS effects on the central visual field only (Kraft et al. 207:283–290, 2010). Fifteen healthy subjects participated in this randomized repeated-measure design study and received 1.5-mA anodal, cathodal and sham stimulation in different sessions, while performing 10-2 and 60-4 protocols in an automated perimeter. Anodal tDCS significantly decreased thresholds, but was limited to the most eccentric regions of the visual field measured (60°). This suggests that tDCS might be used for rehabilitation of peripheral visual field losses. We did not replicate the excitatory tDCS effect in the central visual field as previously reported by another group. Instead, we observed a trend toward an inhibitory (yet not statistically significant) effect of anodal tDCS on the central field. This might be explained by methodological differences. These results highlight that although tDCS is a technique with a low focality in the spatial domain, its effects might be highly focal in a functional domain. When taken together with previous findings, this also suggests that tDCS may have a differential effect on different retinotopic areas in the brain.
Neuroscience Letters | 2015
Thiago L. Costa; Marcelo Fernandes Costa; Adsson Magalhães; Gabriel Rêgo; Balázs Nagy; Paulo S. Boggio; Dora Fix Ventura
Recent research suggests that V1 plays an active role in the judgment of size and distance. Nevertheless, no research has been performed using direct brain stimulation to address this issue. We used transcranial direct-current stimulation (tDCS) to directly modulate the early stages of cortical visual processing while measuring size and distance perception with a psychophysical scaling method of magnitude estimation in a repeated-measures design. The subjects randomly received anodal, cathodal, and sham tDCS in separate sessions starting with size or distance judgment tasks. Power functions were fit to the size judgment data, whereas logarithmic functions were fit to distance judgment data. Slopes and R(2) were compared with separate repeated-measures analyses of variance with two factors: task (size vs. distance) and tDCS (anodal vs. cathodal vs. sham). Anodal tDCS significantly decreased slopes, apparently interfering with size perception. No effects were found for distance perception. Consistent with previous studies, the results of the size task appeared to reflect a prothetic continuum, whereas the results of the distance task seemed to reflect a metathetic continuum. The differential effects of tDCS on these tasks may support the hypothesis that different physiological mechanisms underlie judgments on these two continua. The results further suggest the complex involvement of the early visual cortex in size judgment tasks that go beyond the simple representation of low-level stimulus properties. This supports predictive coding models and experimental findings that suggest that higher-order visual areas may inhibit incoming information from the early visual cortex through feedback connections when complex tasks are performed.
Frontiers in Psychology | 2017
Elaine Cristina Zachi; Thiago L. Costa; Mirella Telles Salgueiro Barboni; Marcelo Fernandes Costa; Daniela Maria Oliveira Bonci; Dora Fix Ventura
Autism spectrum disorders (ASDs) are neurodevelopmental conditions characterized by impairments in social/communication abilities and restricted behaviors. The present study aims to examine color vision discrimination in ASD children and adolescents without intellectual disability. The participants were also subdivided in order to compare color vision thresholds of autistic participants and those who achieved diagnostic criteria for Asperger Syndrome (AS). Nine subjects with autism, 11 participants with AS and 36 typically developing children and adolescents participated in the study. Color vision was assessed by the Cambridge Color Test (CCT). The Trivector protocol was administered to determine color discrimination thresholds along the protan, deutan, and tritan color confusion lines. Data from ASD participants were compared to tolerance limits for 90% of the population with 90% probability obtained from controls thresholds. Of the 20 ASD individuals examined, 6 (30%) showed color vision losses. Elevated color discrimination thresholds were found in 3/9 participants with autism and in 3/11 AS participants. Diffuse and tritan deficits were found. Mechanisms for chromatic losses may be either at the retinal level and/or reflect reduced cortical integration.
Temas em Psicologia | 2014
Thiago L. Costa; Paulo S. Boggio; Dora Fix Ventura
Transcranial direct current stimulation (tDCS) is an “old/new” noninvasive brain modulation technique that has gained increasing popularity and relevance in psychology and neuroscience. The contemporary tDCS procedure is effective and painless. It was shown to modulate motor performance and several sensory and cognitive functions. It can be used to study cortical organization and clarify brain-behavior relationships. Using tDCS for rehabilitation is a promising strategy, and numerous publications suggest that it can be used alone or combined to augment the outcomes of behavioral training and pharmacological interventions. Compared with other brain modulation techniques, it has the advantage of being noninvasive and safe, with easy and effective placebo controls. Its effi cacy, low cost, and ease of use make tDCS a very convenient tool for researchers in developing countries. This review introduces tDCS to a new audience and seeks to inspire future investigations in the fi eld. We highlight work that illustrates the main concepts and applications of tDCS as a basic research and rehabilitation tool.
PLOS ONE | 2018
Thiago L. Costa; Fernando Rafael Barri
Guanacos (Lama guanicoe) are large ungulates that have been valued by human populations in South America since the Late Pleistocene. Even though they were very abundant until the end of the 19th century (before the high deforestation rate of the last decades), guanacos have nearly disappeared in the Gran Chaco ecoregion, with relicts and isolated populations surviving in some areas, such as the shrubland area near the saline depressions of Córdoba province, Argentina. In this report, we present the first data from a locally endangered guanaco wild population, through the study of skeletal remains recovered in La Providencia ranch. Our results showed that most of the elements belonged to adults aged between 36 and 96 months; sex evaluation showed similar numbers of males and females. Statistical analysis of the body size of modern samples from Córdoba demonstrated that guanacos from the Chaco had large dimensions and presented lower size variability than the modern and archaeological specimens in our database. Moreover, they exhibited dimensions similar to those of modern guanacos from Patagonia and San Juan, and to archaeological specimens from Ongamira and Cerro Colorado, although further genetic studies are needed to corroborate a possible phylogenetic relationship. Finally, we used archaeozoological techniques to provide a first characterization of a relict guanaco population from the Chaco ecoregion, demonstrating its value to the study of modern skeletal remains and species conservation biology.
Temas em Psicologia | 2014
Thiago L. Costa; Paulo S. Boggio; Dora Fix Ventura
Transcranial direct current stimulation (tDCS) is an “old/new” noninvasive brain modulation technique that has gained increasing popularity and relevance in psychology and neuroscience. The contemporary tDCS procedure is effective and painless. It was shown to modulate motor performance and several sensory and cognitive functions. It can be used to study cortical organization and clarify brain-behavior relationships. Using tDCS for rehabilitation is a promising strategy, and numerous publications suggest that it can be used alone or combined to augment the outcomes of behavioral training and pharmacological interventions. Compared with other brain modulation techniques, it has the advantage of being noninvasive and safe, with easy and effective placebo controls. Its effi cacy, low cost, and ease of use make tDCS a very convenient tool for researchers in developing countries. This review introduces tDCS to a new audience and seeks to inspire future investigations in the fi eld. We highlight work that illustrates the main concepts and applications of tDCS as a basic research and rehabilitation tool.
Temas em Psicologia | 2014
Thiago L. Costa; Paulo S. Boggio; Dora Fix Ventura
Transcranial direct current stimulation (tDCS) is an “old/new” noninvasive brain modulation technique that has gained increasing popularity and relevance in psychology and neuroscience. The contemporary tDCS procedure is effective and painless. It was shown to modulate motor performance and several sensory and cognitive functions. It can be used to study cortical organization and clarify brain-behavior relationships. Using tDCS for rehabilitation is a promising strategy, and numerous publications suggest that it can be used alone or combined to augment the outcomes of behavioral training and pharmacological interventions. Compared with other brain modulation techniques, it has the advantage of being noninvasive and safe, with easy and effective placebo controls. Its effi cacy, low cost, and ease of use make tDCS a very convenient tool for researchers in developing countries. This review introduces tDCS to a new audience and seeks to inspire future investigations in the fi eld. We highlight work that illustrates the main concepts and applications of tDCS as a basic research and rehabilitation tool.