Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thiago M. Batista is active.

Publication


Featured researches published by Thiago M. Batista.


PLOS ONE | 2012

Short-term treatment with bisphenol-A leads to metabolic abnormalities in adult male mice.

Thiago M. Batista; Paloma Alonso-Magdalena; Elaine Vieira; Maria Esméria Corezola do Amaral; Christopher R. Cederroth; Serge Nef; Ivan Quesada; Everardo M. Carneiro; Angel Nadal

Bisphenol-A (BPA) is one of the most widespread endocrine disrupting chemicals (EDC) used as the base compound in the manufacture of polycarbonate plastics. Although evidence points to consider exposure to BPA as a risk factor for insulin resistance, its actions on whole body metabolism and on insulin-sensitive tissues are still unclear. The aim of the present work was to study the effects of low doses of BPA in insulin-sensitive peripheral tissues and whole body metabolism in adult mice. Adult mice were treated with subcutaneous injection of 100 µg/kg BPA or vehicle for 8 days. Whole body energy homeostasis was assessed with in vivo indirect calorimetry. Insulin signaling assays were conducted by western blot analysis. Mice treated with BPA were insulin resistant and had increased glucose-stimulated insulin release. BPA-treated mice had decreased food intake, lower body temperature and locomotor activity compared to control. In skeletal muscle, insulin-stimulated tyrosine phosphorylation of the insulin receptor β subunit was impaired in BPA-treated mice. This impairment was associated with a reduced insulin-stimulated Akt phosphorylation in the Thr308 residue. Both skeletal muscle and liver displayed an upregulation of IRS-1 protein by BPA. The mitogen-activated protein kinase (MAPK) signaling pathway was also impaired in the skeletal muscle from BPA-treated mice. In the liver, BPA effects were of lesser intensity with decreased insulin-stimulated tyrosine phosphorylation of the insulin receptor β subunit. In conclusion, short-term treatment with low doses of BPA slows down whole body energy metabolism and disrupts insulin signaling in peripheral tissues. Thus, our findings support the notion that BPA can be considered a risk factor for the development of type 2 diabetes.


Diabetes | 2009

Inhibitory Effects of Leptin on Pancreatic α-Cell Function

Eva Tudurí; Laura Marroquí; Sergi Soriano; Ana B. Ropero; Thiago M. Batista; Sandra Piquer; Miguel A. López-Boado; Everardo M. Carneiro; Ramon Gomis; Angel Nadal; Ivan Quesada

OBJECTIVE Leptin released from adipocytes plays a key role in the control of food intake, energy balance, and glucose homeostasis. In addition to its central action, leptin directly affects pancreatic β-cells, inhibiting insulin secretion, and, thus, modulating glucose homeostasis. However, despite the importance of glucagon secretion in glucose homeostasis, the role of leptin in α-cell function has not been studied in detail. In the present study, we have investigated this functional interaction. RESEARCH DESIGN AND METHODS The presence of leptin receptors (ObR) was demonstrated by RT-PCR analysis, Western blot, and immunocytochemistry. Electrical activity was analyzed by patch-clamp and Ca2+ signals by confocal microscopy. Exocytosis and glucagon secretion were assessed using fluorescence methods and radioimmunoassay, respectively. RESULTS The expression of several ObR isoforms (a–e) was detected in glucagon-secreting αTC1-9 cells. ObRb, the main isoform involved in leptin signaling, was identified at the protein level in αTC1-9 cells as well as in mouse and human α-cells. The application of leptin (6.25 nmol/l) hyperpolarized the α-cell membrane potential, suppressing the electrical activity induced by 0.5 mmol/l glucose. Additionally, leptin inhibited Ca2+ signaling in αTC1-9 cells and in mouse and human α-cells within intact islets. A similar result occurred with 0.625 nmol/l leptin. These effects were accompanied by a decrease in glucagon secretion from mouse islets and were counteracted by the phosphatidylinositol 3-kinase inhibitor, wortmannin, suggesting the involvement of this pathway in leptin action. CONCLUSIONS These results demonstrate that leptin inhibits α-cell function, and, thus, these cells are involved in the adipoinsular communication.


Endocrinology | 2012

The Clock Gene Rev-erbα Regulates Pancreatic β-Cell Function: Modulation by Leptin and High-Fat Diet

Elaine Vieira; Laura Marroquí; Thiago M. Batista; Ernesto Caballero-Garrido; Everardo M. Carneiro; Antonio C. Boschero; Angel Nadal; Ivan Quesada

Disturbances of circadian rhythms have been associated with obesity and type 2 diabetes. The nuclear receptor Rev-erbα was suggested to link circadian rhythms and metabolism in peripheral tissues. The aim of the present study was to dissect the role of this clock gene in the pancreatic β-cell function and to analyze whether its expression is modulated by leptin and diet-induced obesity. To address the function of Rev-erbα, we used small interfering RNA in mouse islet cells and in MIN-6 cells. Cell proliferation was measured by bromodeoxyuridine incorporation, apoptosis by the terminal deoxynucleotidyl transferase dUTP nick end labeling technique, insulin secretion by RIA, and gene expression by RT-PCR. Pancreatic islets were isolated at different zeitgeber times 0, 6, and 12 after 6 wk of high-fat diet treatment, and then gene expression and insulin secretion were determined. Rev-erbα down-regulation by small interfering RNA treatment in islet cells and MIN-6 cells impaired glucose-induced insulin secretion, decreased the expression of key lipogenic genes, and inhibited β-cell proliferation. In vivo and in vitro leptin treatment increased Rev-erbα expression in isolated islets through a MAPK pathway. High-fat diet treatment disrupted the circadian Rev-erbα gene expression profile along with insulin secretion, indicating an important role of this clock gene in β-cell function. These results indicate that the clock gene Rev-erbα plays multiple functions in the pancreatic β-cell. Although the increase in Rev-erbα expression may promote β-cell adaptation in different metabolic situations, its deregulation may lead to altered β-cell function.


Journal of Ethnopharmacology | 2011

Hypoglycaemic activity and molecular mechanisms of Caesalpinia ferrea Martius bark extract on streptozotocin-induced diabetes in Wistar rats

Carlos F. B. Vasconcelos; H.M.L. Maranhão; Thiago M. Batista; Everardo M. Carneiro; Fabiano Ferreira; J. Costa; Luiz Alberto Lira Soares; M.D.C. Sá; Tatiane Pereira de Souza; Almir Gonçalves Wanderley

ETHNOPHARMACOLOGICAL RELEVANCE The tea from the stem bark of Caesalpinia ferrea Martius (Leguminosae) has been popularly used in the treatment of diabetes in Brazil. AIM OF THE STUDY To investigate the hypoglycaemic properties and to elucidate the mechanisms by which the aqueous extract of the stem bark of Caesalpinia ferrea reduces blood glucose levels in streptozotocin-induced diabetic rats via the enzymatic pathways of protein kinase B (PKB/Akt), AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC). MATERIALS AND METHODS The aqueous extract of the stem bark of Caesalpinia ferrea (300 and 450 mg/kg/day), vehicle and metformin (500 mg/kg/day) were administered orally to STZ-diabetic rats (n = 7/group) for 4 weeks. Changes in body weight, food and water intake, fasting glucose levels and oral glucose tolerance were evaluated. Phosphorylation (P) and the expression of Akt, AMPK and ACC in the liver and skeletal muscle were determined using Western blot. RESULTS The aqueous extract of the stem bark of Caesalpinia ferrea reduced blood glucose levels and improved the metabolic state of the animals. P-Akt was increased in the liver and skeletal muscle of the treated animals, P-AMPK was reduced only in the skeletal muscle of these animals and P-ACC was reduced in both when compared with untreated rats. CONCLUSION The results indicate that the aqueous extract of the stem bark of Caesalpinia ferrea has hypoglycaemic properties and possibly acts to regulate glucose uptake in liver and muscles by way of Akt activation, restoring the intracellular energy balance confirmed by inhibition of AMPK activation.


Molecular Nutrition & Food Research | 2013

Taurine supplementation improves liver glucose control in normal protein and malnourished mice fed a high-fat diet

Thiago M. Batista; Rosane Aparecida Ribeiro; Priscilla Muniz Ribeiro da Silva; Rafael Ludemann Camargo; Pablo Christiano Barboza Lollo; Antonio C. Boschero; Everardo M. Carneiro

SCOPE Poor nutrition during the perinatal period is associated with an increased risk for metabolic syndrome in adulthood. Taurine (TAU) regulates β-cell function and glucose homeo-stasis. Here, we assessed the effects of TAU supplementation upon adiposity and glucose control in malnourished mice fed a high-fat diet (HFD). METHODS AND RESULTS Weaned male C57BL/6J mice were fed a control (14% protein - C) or a protein-restricted (6% protein - R) diet for 6 weeks. Afterwards, mice received or not an HFD for 8 weeks (CH and RH). Half of the HFDmice were supplemented with 5% TAU after weaning (CHT and RHT). Protein restriction led to typical malnutrition features. HFD increased body weight, adiposity, and led to hyperleptinemia, hyperphagia, glucose intolerance, and higher liver glucose output in RH and CH groups. Fasted R mice showed higher plasma adiponectin levels and increased phosphorylation of the AMP-activated protein kinase (p-AMPK) in the liver. These parameters were reduced in RH mice and increased p-AMPK persisted in RHT. TAU prevented obesity and improved glucose tolerance only in CHT, but liver glucose control was ameliorated in both supplemented groups. Better CHT liver glucose control was linked to increased Akt (thymoma viral proto-oncogene/protein kinase B) phosphorylation. CONCLUSION Malnourished mice fed an HFD developed obesity, glucose intolerance, and increased liver glucose output. TAU preserved only normal liver glucose control in RHT mice, an effect associated with increased liver p-AMPK content.


Metabolism-clinical and Experimental | 2010

Augmentation of insulin secretion by leucine supplementation in malnourished rats: possible involvement of the phosphatidylinositol 3-phosphate kinase/mammalian target protein of rapamycin pathway.

Eliane Filiputti; Alex Rafacho; Eliana P. Araújo; Leonardo R. Silveira; Amon Trevisan; Thiago M. Batista; Rui Curi; Lício A. Velloso; Ivan Quesada; Antonio C. Boschero; Everardo M. Carneiro

A regimen of low-protein diet induces a reduction of pancreatic islet function that is associated with development of metabolic disorders including diabetes and obesity afterward. In the present study, the influence of leucine supplementation on metabolic parameters, insulin secretion to glucose and to amino acids, as well as the levels of proteins that participate in the phosphatidylinositol 3-phosphate kinase (PI3K) pathway was investigated in malnourished rats. Four groups were fed with different diets for 12 weeks: a normal protein diet (17%) without (NP) or with leucine supplementation (NPL) or a low (6%)-protein diet without (LP) or with leucine supplementation (LPL). Leucine was given in the drinking water during the last 4 weeks. As indicated by the intraperitoneal glucose tolerance test, LPL rats exhibited increased glucose tolerance as compared with NPL group. Both NPL and LPL rats had higher circulating insulin levels than controls. The LPL rats also showed increased insulin secretion by pancreatic islets in response to glucose or arginine compared with those observed in islets from LP animals. Glucose oxidation was significantly reduced in NPL, LP, and LPL isolated islets as compared with NP; but no alteration was observed for leucine and glutamate oxidation among the 4 groups. Western blotting analysis demonstrated increased PI3K and mammalian target protein of rapamycin protein contents in LPL compared with LP islets. A significant increase in insulin-induced insulin receptor substrate 1-associated PI3K activation was also observed in LPL compared with LP islets. These findings indicate that leucine supplementation can augment islet function in malnourished rats and that activation of the PI3K/mammalian target protein of rapamycin pathway may play a role in this process.


Food Chemistry | 2013

A dipeptide and an amino acid present in whey protein hydrolysate increase translocation of GLUT-4 to the plasma membrane in Wistar rats.

Priscila Neder Morato; Pablo Christiano Barboza Lollo; Carolina Soares Moura; Thiago M. Batista; Everardo M. Carneiro; Jaime Amaya-Farfan

Whey protein hydrolysate (WPH) is capable of increasing muscle glycogen reserves and of concentrating the glucose transporter in the plasma membrane (PM). The objective of this study was to determine which WPH components could modulate translocation of the glucose transporter GLUT-4 to the PM of animal skeletal muscle. Forty-nine animals were divided into 7 groups (n=7) and received by oral gavage 30% glucose plus 0.55 g/kg body mass of the following WPH components: (a) control; (b) WPH; (c) L-isoleucine; (d) L-leucine; (e) L-leucine plus L-isoleucine; (f) L-isoleucyl-L-leucine dipeptide; (g) L-leucyl-L-isoleucine dipeptide. After receiving these solutions, the animals were sacrificed and the GLUT-4 analysed by western blot. Additionally, glycogen, glycaemia, insulin and free amino acids were also determined by standard methods. Of the WPH components tested, the amino acid L-isoleucine and the peptide L-leucyl-L-isoleucine showed greater efficiency in translocating GLUT-4 to the PM and of increasing glucose capture by skeletal muscle.


Journal of Nutritional Biochemistry | 2012

Taurine supplementation restores glucose and carbachol-induced insulin secretion in islets from low-protein diet rats: involvement of Ach-M3R, Synt 1 and SNAP-25 proteins.

Thiago M. Batista; Rosane A. Ribeiro; Andressa G. Amaral; Camila Andréa de Oliveira; Antonio C. Boschero; Everardo M. Carneiro

Isolated islets from low-protein (LP) diet rats showed decreased insulin secretion in response to glucose and carbachol (Cch). Taurine (TAU) increases insulin secretion in rodent islets with a positive effect upon the cholinergic pathway. Here, we investigated the effect of TAU administration upon glucose tolerance and insulin release in rats fed on a normal protein diet (17%) without (NP) or with 2.5% of TAU in their drinking water (NPT), and LP diet fed rats (6%) without (LP) or with TAU (LPT). Glucose tolerance was found to be higher in LP, compared to NP rats. However, plasma glucose levels, during ipGTT, in LPT rats were similar to those of controls. Isolated islets from LP rats secreted less insulin in response to increasing glucose concentrations (2.8-22.2 mmol/L) and to 100 μmol/L Cch. This lower secretion was accompanied by a reduction in Cch-induced internal Ca(2+) mobilization. TAU supplementation prevents these alterations, as judged by the higher secretion induced by glucose or Cch in LPT islets. In addition, Ach-M3R, syntaxin 1 and synaptosomal associated protein of 25 kDa protein expressions in LP were lower than in NP islets. The expressions of these proteins in LPT were normalized. Finally, the sarcoendoplasmatic reticulum Ca(2+)-ATPase 3 protein expression was higher in LPT and NPT, compared with controls. In conclusion, TAU supplementation to LP rats prevented alterations in glucose tolerance as well as in insulin secretion from isolated islets. The latter effect involves the normalization of the cholinergic pathway, associated with the preservation of exocytotic proteins.


Biochimica et Biophysica Acta | 2013

Hydrogen peroxide production regulates the mitochondrial function in insulin resistant muscle cells: Effect of catalase overexpression

Marina R. Barbosa; Igor H. Sampaio; Bruno G. Teodoro; Thais A. Sousa; Claudio C. Zoppi; André L. Queiroz; Madla A. Passos; Luciane C. Alberici; Felipe R. Teixeira; Adriana O. Manfiolli; Thiago M. Batista; Ana Paula Gameiro Cappelli; Rosana I. Reis; Danúbia Frasson; Isis C. Kettelhut; Lucas T. Parreiras-e-Silva; Claudio M. Costa-Neto; Everardo M. Carneiro; Rui Curi; Leonardo R. Silveira

The mitochondrial redox state plays a central role in the link between mitochondrial overloading and insulin resistance. However, the mechanism by which the ROS induce insulin resistance in skeletal muscle cells is not completely understood. We examined the association between mitochondrial function and H2O2 production in insulin resistant cells. Our hypothesis is that the low mitochondrial oxygen consumption leads to elevated ROS production by a mechanism associated with reduced PGC1α transcription and low content of phosphorylated CREB. The cells were transfected with either the encoded sequence for catalase overexpression or the specific siRNA for catalase inhibition. After transfection, myotubes were incubated with palmitic acid (500μM) and the insulin response, as well as mitochondrial function and fatty acid metabolism, was determined. The low mitochondrial oxygen consumption led to elevated ROS production by a mechanism associated with β-oxidation of fatty acids. Rotenone was observed to reduce the ratio of ROS production. The elevated H2O2 production markedly decreased the PGC1α transcription, an effect that was accompanied by a reduced phosphorylation of Akt and CREB. The catalase transfection prevented the reduction in the phosphorylated level of Akt and upregulated the levels of phosphorylated CREB. The mitochondrial function was elevated and H2O2 production reduced, thus increasing the insulin sensitivity. The catalase overexpression improved mitochondrial respiration protecting the cells from fatty acid-induced, insulin resistance. This effect indicates that control of hydrogen peroxide production regulates the mitochondrial respiration preventing the insulin resistance in skeletal muscle cells by a mechanism associated with CREB phosphorylation and β-oxidation of fatty acids.


Journal of Ethnopharmacology | 2012

Anti-diabetic activity of extract from Persea americana Mill. leaf via the activation of protein kinase B (PKB/Akt) in streptozotocin-induced diabetic rats

C.R. Lima; Carlos F. B. Vasconcelos; João Henrique Costa-Silva; C.A. Maranhão; J. Costa; Thiago M. Batista; Everardo M. Carneiro; Luiz Alberto Lira Soares; Fabiano Ferreira; Almir Gonçalves Wanderley

ETHNOPHARMACOLOGICAL RELEVANCE The leaves of Persea americana Mill. (Lauraceae) have been popularly used in the treatment of diabetes in countries in Latin America and Africa. AIM OF THE STUDY To investigate the hypoglycaemic properties and to determine the molecular mechanism by which the hydroalcoholic extract of the leaves of Persea americana reduce blood glucose levels in streptozotocin (STZ)-induced diabetes in rats via the enzymatic pathway of protein kinase B (PKB/Akt). METHODS The hydroalcoholic extract of the leaves of Persea americana (0.15 and 0.3g/kg/day), vehicle and metformin (0.5g/kg/day) were administered orally to STZ-diabetic rats (n=7/group) for 4 weeks. Changes in body weight, food and water intake, fasting glucose levels and oral glucose tolerance were evaluated. Phosphorylation and the expression of PKB in the liver and soleus muscle were determined by Western blot. RESULTS The hydroalcoholic extract of the leaves of Persea americana reduced blood glucose levels and improved the metabolic state of the animals. Additionally, PKB activation was observed in the liver and skeletal muscle of treated rats when compared with untreated rats. CONCLUSION The results indicate that the hydroalcoholic extract of the leaves of Persea americana has anti-diabetic properties and possibly acts to regulate glucose uptake in liver and muscles by way of PKB/Akt activation, restoring the intracellular energy balance.

Collaboration


Dive into the Thiago M. Batista's collaboration.

Top Co-Authors

Avatar

Everardo M. Carneiro

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar

Antonio C. Boschero

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rosane Aparecida Ribeiro

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claudio C. Zoppi

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Everardo Magalhães Carneiro

Federal University of Rio de Janeiro

View shared research outputs
Researchain Logo
Decentralizing Knowledge