Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thibaut Weise is active.

Publication


Featured researches published by Thibaut Weise.


international conference on computer graphics and interactive techniques | 2011

Realtime performance-based facial animation

Thibaut Weise; Sofien Bouaziz; Hao Li; Mark Pauly

This paper presents a system for performance-based character animation that enables any user to control the facial expressions of a digital avatar in realtime. The user is recorded in a natural environment using a non-intrusive, commercially available 3D sensor. The simplicity of this acquisition device comes at the cost of high noise levels in the acquired data. To effectively map low-quality 2D images and 3D depth maps to realistic facial expressions, we introduce a novel face tracking algorithm that combines geometry and texture registration with pre-recorded animation priors in a single optimization. Formulated as a maximum a posteriori estimation in a reduced parameter space, our method implicitly exploits temporal coherence to stabilize the tracking. We demonstrate that compelling 3D facial dynamics can be reconstructed in realtime without the use of face markers, intrusive lighting, or complex scanning hardware. This makes our system easy to deploy and facilitates a range of new applications, e.g. in digital gameplay or social interactions.


computer vision and pattern recognition | 2007

Fast 3D Scanning with Automatic Motion Compensation

Thibaut Weise; Bastian Leibe; L. Van Gool

We present a novel 3D scanning system combining stereo and active illumination based on phase-shift for robust and accurate scene reconstruction. Stereo overcomes the traditional phase discontinuity problem and allows for the reconstruction of complex scenes containing multiple objects. Due to the sequential recording of three patterns, motion will introduce artifacts in the reconstruction. We develop a closed-form expression for the motion error in order to apply motion compensation on a pixel level. The resulting scanning system can capture accurate depth maps of complex dynamic scenes at 17 fps and can cope with both rigid and deformable objects.


international conference on pattern recognition | 2011

Real time head pose estimation from consumer depth cameras

Gabriele Fanelli; Thibaut Weise; Juergen Gall; Luc Van Gool

We present a system for estimating location and orientation of a persons head, from depth data acquired by a low quality device. Our approach is based on discriminative random regression forests: ensembles of random trees trained by splitting each node so as to simultaneously reduce the entropy of the class labels distribution and the variance of the head position and orientation. We evaluate three different approaches to jointly take classification and regression performance into account during training. For evaluation, we acquired a new dataset and propose a method for its automatic annotation.


symposium on computer animation | 2009

Face/Off: live facial puppetry

Thibaut Weise; Hao Li; Luc Van Gool; Mark Pauly

We present a complete integrated system for live facial puppetry that enables high-resolution real-time facial expression tracking with transfer to another persons face. The system utilizes a real-time structured light scanner that provides dense 3D data and texture. A generic template mesh, fitted to a rigid reconstruction of the actors face, is tracked offline in a training stage through a set of expression sequences. These sequences are used to build a person-specific linear face model that is subsequently used for online face tracking and expression transfer. Even with just a single rigid pose of the target face, convincing real-time facial animations are achievable. The actor becomes a puppeteer with complete and accurate control over a digital face.


computer vision and pattern recognition | 2008

Real-time face pose estimation from single range images

Michael D. Breitenstein; Daniel Kuettel; Thibaut Weise; L. Van Gool; Hanspeter Pfister

We present a real-time algorithm to estimate the 3D pose of a previously unseen face from a single range image. Based on a novel shape signature to identify noses in range images, we generate candidates for their positions, and then generate and evaluate many pose hypotheses in parallel using modern graphics processing units (GPUs). We developed a novel error function that compares the input range image to precomputed pose images of an average face model. The algorithm is robust to large pose variations of plusmn90deg yaw, plusmn45deg pitch and plusmn30deg roll rotation, facial expression, partial occlusion, and works for multiple faces in the field of view. It correctly estimates 97.8% of the poses within yaw and pitch error of 15deg at 55.8 fps. To evaluate the algorithm, we built a database of range images with large pose variations and developed a method for automatic ground truth annotation.


international conference on computer graphics and interactive techniques | 2010

Example-based facial rigging

Hao Li; Thibaut Weise; Mark Pauly

We introduce a method for generating facial blendshape rigs from a set of example poses of a CG character. Our system transfers controller semantics and expression dynamics from a generic template to the target blendshape model, while solving for an optimal reproduction of the training poses. This enables a scalable design process, where the user can iteratively add more training poses to refine the blendshape expression space. However, plausible animations can be obtained even with a single training pose. We show how formulating the optimization in gradient space yields superior results as compared to a direct optimization on blendshape vertices. We provide examples for both hand-crafted characters and 3D scans of a real actor and demonstrate the performance of our system in the context of markerless art-directable facial tracking.


Computer Graphics Forum | 2012

Shape-Up: Shaping Discrete Geometry with Projections

Sofien Bouaziz; Mario Deuss; Yuliy Schwartzburg; Thibaut Weise; Mark Pauly

We introduce a unified optimization framework for geometry processing based on shape constraints. These constraints preserve or prescribe the shape of subsets of the points of a geometric data set, such as polygons, one‐ring cells, volume elements, or feature curves. Our method is based on two key concepts: a shape proximity function and shape projection operators. The proximity function encodes the distance of a desired least‐squares fitted elementary target shape to the corresponding vertices of the 3D model. Projection operators are employed to minimize the proximity function by relocating vertices in a minimal way to match the imposed shape constraints. We demonstrate that this approach leads to a simple, robust, and efficient algorithm that allows implementing a variety of geometry processing applications, simply by combining suitable projection operators. We show examples for computing planar and circular meshes, shape space exploration, mesh quality improvement, shape‐preserving deformation, and conformal parametrization. Our optimization framework provides a systematic way of building new solvers for geometry processing and produces similar or better results than state‐of‐the‐art methods.


international conference on computer vision | 2009

In-hand scanning with online loop closure

Thibaut Weise; Thomas Wismer; Bastian Leibe; Luc Van Gool

We present a complete 3D in-hand scanning system that allows users to scan objects by simply turning them freely in front of a real-time 3D range scanner. The 3D object model is reconstructed online as a point cloud by registering and integrating the incoming 3D patches with the online 3D model. The accumulation of registration errors leads to the well-known loop closure problem. We address this issue already during the scanning session by distorting the object as rigidly as possible. Scanning errors are removed by explicitly handling outliers. As a result of our proposed online modeling and error handling procedure, the online model is of sufficiently high quality to serve as the final model. Thus, no additional post-processing is required which might lead to artifacts in the model reconstruction. We demonstrate our approach on several difficult real-world objects and quantitatively evaluate the resulting modeling accuracy.


IEEE Transactions on Multimedia | 2010

A 3-D Audio-Visual Corpus of Affective Communication

Gabriele Fanelli; Jürgen Gall; Harald Romsdorfer; Thibaut Weise; L. Van Gool

Communication between humans deeply relies on the capability of expressing and recognizing feelings. For this reason, research on human-machine interaction needs to focus on the recognition and simulation of emotional states, prerequisite of which is the collection of affective corpora. Currently available datasets still represent a bottleneck for the difficulties arising during the acquisition and labeling of affective data. In this work, we present a new audio-visual corpus for possibly the two most important modalities used by humans to communicate their emotional states, namely speech and facial expression in the form of dense dynamic 3-D face geometries. We acquire high-quality data by working in a controlled environment and resort to video clips to induce affective states. The annotation of the speech signal includes: transcription of the corpus text into the phonological representation, accurate phone segmentation, fundamental frequency extraction, and signal intensity estimation of the speech signals. We employ a real-time 3-D scanner to acquire dense dynamic facial geometries and track the faces throughout the sequences, achieving full spatial and temporal correspondences. The corpus is a valuable tool for applications like affective visual speech synthesis or view-independent facial expression recognition.


computer vision and pattern recognition | 2008

Accurate and robust registration for in-hand modeling

Thibaut Weise; Bastian Leibe; L. Van Gool

We present fast 3D surface registration methods for in-hand modeling. This allows users to scan complete objects swiftly by simply turning them around in front of the scanner. The paper makes two main contributions. First, we propose an efficient method for detecting registration failures, which is a vital property of any automatic modeling system. Our method is based on two different consistency tests, one based on geometry and one based on texture. Second, we extend ICP by three additional fast registration methods for both coarse and fine alignment based on both texture and geometry. Each of those methods brings in additional information that can compensate for ambiguities in the other cues. Together, they allow for the robust reconstruction of a large variety of objects with different geometric and photometric properties. Finally, we show how both failure detection and fast registration can be combined in a practical and robust in-hand modeling system that operates at interactive frame rates.

Collaboration


Dive into the Thibaut Weise's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark Pauly

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sofien Bouaziz

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge