Thierry Buclin
University of Lausanne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Thierry Buclin.
AIDS | 2001
Catia Marzolini; Amalio Telenti; Laurent A. Decosterd; Gilbert Greub; Jérôme Biollaz; Thierry Buclin
ObjectiveLimited information exists on the clinical usefulness of drug level monitoring for efavirenz, a once-daily non-nucleoside reverse transcriptase inhibitor (NNRTI). The aim of this study was to determine whether efavirenz plasma concentration monitoring could predict treatment failure and central nervous system (CNS) tolerability. MethodsBlood samples were obtained from 130 HIV-infected patients receiving efavirenz in combination with other antiretroviral agents for more than 3 months. Efavirenz plasma concentrations were measured by high-performance liquid chromatography. An evaluation of CNS side-effects was performed and the viral load, CD4 cell count and other clinical and laboratory data were assessed. In 85 patients, these measures were repeated at 3 month intervals. ResultsEfavirenz plasma levels (n = 226) were measured at an average of 14 h after drug intake. Drug concentrations ranged from 125 to 15 230 μg/l (median 2188). Large inter-patient (CV 118%) and limited intra-patient (CV 30%) variabilities were observed in efavirenz levels. Virological failure was observed in 50% of patients with low efavirenz levels (< 1000 μg/l) versus 22 and 18% in patients with 1000–4000 μg/l or more than 4000 μg/l, respectively. CNS toxicity was approximately three times more frequent in patients with high efavirenz levels (> 4000 μg/l) compared with patients with 1000–4000 μg/l. ConclusionTreatment failure and CNS side-effects are associated with low and high efavirenz plasma levels, respectively. The important inter-individual variability in efavirenz levels strongly argues for dose adjustment on the basis of therapeutic drug monitoring to optimize treatment.
The Lancet | 2002
Jacques Fellay; Catia Marzolini; Emma R. Meaden; David Back; Thierry Buclin; Jean Philippe Chave; Laurent A. Decosterd; Hansjakob Furrer; Milos Opravil; Giuseppe Pantaleo; Dorota Retelska; Lidia Ruiz; Alfred H. Schinkel; Pietro Vernazza; Chin B. Eap; Amalio Telenti
BACKGROUND HIV-1-infected patients vary considerably by their response to antiretroviral treatment, drug concentrations in plasma, toxic events, and rate of immune recovery. This variability could have a genetic basis. We did a pharmacogenetics study to analyse the association between response to antiretroviral treatment and allelic variants of several genes. METHODS In 123 patients, we did PCR analyses of the gene for the multidrug-resistance transporter (MDR1), which codes for P-glycoprotein, of genes coding for isoenzymes of cytochrome P450, CYP3A4, CYP3A5, CYP2D6, and CYP2C19, and of the gene for the chemokine receptor CCR5. We measured concentrations in plasma of the antiretroviral agents efavirenz and nelfinavir by high-performance liquid-chromatography, and measured levels of P-glycoprotein expression, CD4-cell count, and HIV-1 viraemia. FINDINGS Median drug concentrations in patients with the MDR1 3435 TT, CT, and CC genotypes were at the 30th, 50th, and 75th percentiles, respectively (p=0.0001). In patients with CYP2D6 extensive-metaboliser or poor-metaboliser alleles, median drug concentrations were at percentiles 45 and 62.5, respectively (p=0.04). Patients with the MDR1 TT genotype 6 months after starting treatment had a greater rise in CD4-cell count (257 cells/microL) than patients with the CT (165 cells/microL) and CC (121 cells/microL) genotype (p=0.0048), and the best recovery of naïve CD4-cells. INTERPRETATION The polymorphism MDR1 3435 C/T predicts immune recovery after initiation of antiretroviral treatment. This finding suggests that P-glycoprotein has an important role in admittance of antiretroviral drugs to restricted compartments in vivo.
Clinical Infectious Diseases | 2008
Andres Pascual; Thierry Calandra; Saskia Bolay; Thierry Buclin; Jacques Bille; Oscar Marchetti
BACKGROUND Voriconazole is the therapy of choice for aspergillosis and a new treatment option for candidiasis. Liver disease, age, genetic polymorphism of the cytochrome CYP2C19, and comedications influence voriconazole metabolism. Large variations in voriconazole pharmacokinetics may be associated with decreased efficacy or with toxicity. METHODS This study was conducted to assess the utility of measuring voriconazole blood levels with individualized dose adjustments. RESULTS A total of 181 measurements with high-pressure liquid chromatography were performed during 2388 treatment days in 52 patients. A large variability in voriconazole trough blood levels was observed, ranging from <or=1 mg/L (the minimum inhibitory concentration at which, for most fungal pathogens, 90% of isolates are susceptible) in 25% of cases to >5.5 mg/L (a level possibly associated with toxicity) in 31% of cases. Lack of response to therapy was more frequent in patients with voriconazole levels <or=1 mg/L (6 [46%] of 13 patients, including 5 patients with aspergillosis, 4 of whom were treated orally with a median dosage of 6 mg/kg per day) than in those with voriconazole levels >1 mg/L (15 [12%] of 39 patients; P=.02). Blood levels >1 mg/L were reached after increasing the voriconazole dosage, with complete resolution of infection in all 6 cases. Among 16 patients with voriconazole trough blood levels >5.5 mg/L, 5 patients (31%) presented with an encephalopathy, including 4 patients who were treated intravenously with a median voriconazole dosage of 8 mg/kg per day, whereas none of the patients with levels <or=5.5 mg/L presented with neurological toxicity (P=.002). Comedication with omeprazole possibly contributed to voriconazole accumulation in 4 patients. In all cases, discontinuation of therapy resulted in prompt and complete neurological recovery. CONCLUSIONS Voriconazole therapeutic drug monitoring improves the efficacy and safety of therapy in severely ill patients with invasive mycoses.
Clinical Pharmacokinectics | 2002
Chin B. Eap; Thierry Buclin; Pierre Baumann
Methadone is widely used for the treatment of opioid dependence. Although in most countries the drug is administered as a racemic mixture of (R)- and (S)-methadone, (R)-methadone accounts for most, if not all, of the opioid effects. Methadone can be detected in the blood 15–45 minutes after oral administration, with peak plasma concentration at 2.5–4 hours. Methadone has a mean bioavailability of around 75% (range 36–100%). Methadone is highly bound to plasma proteins, in particular to α1-acid glycoprotein. Its mean free fraction is around 13%, with a 4-fold interindividual variation. Its volume of distribution is about 4 L/kg (range 2–13 L/kg). The elimination of methadone is mediated by biotransformation, followed by renal and faecal excretion. Total body clearance is about 0.095 L/min, with wide interindividual variation (range 0.02–2 L/min). Plasma concentrations of methadone decrease in a biexponential manner, with a mean value of around 22 hours (range 5–130 hours) for elimination half-life. For the active (R)-enantiomer, mean values of around 40 hours have been determined.Cytochrome P450 (CYP) 3A4 and to a lesser extent 2D6 are probably the main isoforms involved in methadone metabolism. Rifampicin (rifampin), phenobarbital, phenytoin, carbamazepine, nevirapine, and efavirenz decrease methadone blood concentrations, probably by induction of CYP3A4 activity, which can result in severe withdrawal symptoms. Inhibitors of CYP3A4, such as fluconazole, and of CYP2D6, such as paroxetine, increase methadone blood concentrations. There is an up to 17-fold interindividual variation of methadone blood concentration for a given dosage, and interindividual variability of CYP enzymes accounts for a large part of this variation.Since methadone probably also displays large interindividual variability in its pharmacodynamics, methadone treatment must be individually adapted to each patient. Because of the high morbidity and mortality associated with opioid dependence, it is of major importance that methadone is used at an effective dosage in maintenance treatment: at least 60 mg/day, but typically 80–100 mg/day. Recent studies also show that a subset of patients might benefit from methadone dosages larger than 100 mg/day, many of them because of high clearance.In clinical management, medical evaluation of objective signs and subjective symptoms is sufficient for dosage titration in most patients. However, therapeutic drug monitoring can be useful in particular situations. In the case of non-response trough plasma concentrations of 400 μg/L for (R, S)-methadone or 250 μg/L for (R)-methadone might be used as target values.
Clinical Cancer Research | 2004
Sandrine Ostermann; Chantal Csajka; Thierry Buclin; Serge Leyvraz; Ferdy J. Lejeune; Laurent A. Decosterd; Roger Stupp
Purpose: Scarce information is available on the brain penetration of temozolomide (TMZ), although this novel methylating agent is mainly used for the treatment of malignant brain tumors. The purpose was to assess TMZ pharmacokinetics in plasma and cerebrospinal fluid (CSF) along with its inter-individual variability, to characterize covariates and to explore relationships between systemic or cerebral drug exposure and clinical outcomes. Experimental Design: TMZ levels were measured by high-performance liquid chromatography in plasma and CSF samples from 35 patients with newly diagnosed or recurrent malignant gliomas. The population pharmacokinetic analysis was performed with nonlinear mixed-effect modeling software. Drug exposure, defined by the area under the concentration-time curve (AUC) in plasma and CSF, was estimated for each patient and correlated with toxicity, survival, and progression-free survival. Results: A three-compartment model with first-order absorption and transfer rates between plasma and CSF described the data appropriately. Oral clearance was 10 liter/h; volume of distribution (VD), 30.3 liters; absorption constant rate, 5.8 h−1; elimination half-time, 2.1 h; transfer rate from plasma to CSF (Kplasma→CSF), 7.2 × 10−4h−1 and the backwards rate, 0.76 h−1. Body surface area significantly influenced both clearance and VD, and clearance was sex dependent. The AUCCSF corresponded to 20% of the AUCplasma. A trend toward an increased Kplasma→CSF of 15% was observed in case of concomitant radiochemotherapy. No significant correlations between AUC in plasma or CSF and toxicity, survival, or progression-free survival were apparent after deduction of dose-effect. Conclusions: This is the first human pharmacokinetic study on TMZ to quantify CSF penetration. The AUCCSF/AUCplasma ratio was 20%. Systemic or cerebral exposures are not better predictors than the cumulative dose alone for both efficacy and safety.
Neuropsychopharmacology | 2008
Suzie Lavoie; Micah M. Murray; Patricia Deppen; Maria G. Knyazeva; Michael Berk; Oliviir Boulat; Pierre Bovet; Ashley I. Bush; Philippe Conus; David L. Copolov; Eleonora Fornari; Reto Meuli; Alessandra Solida; Pascal Vianin; Michel Cuenod; Thierry Buclin; Kim Q. Do
In schizophrenia patients, glutathione dysregulation at the gene, protein and functional levels, leads to N-methyl-D-aspartate (NMDA) receptor hypofunction. These patients also exhibit deficits in auditory sensory processing that manifests as impaired mismatch negativity (MMN), which is an auditory evoked potential (AEP) component related to NMDA receptor function. N-acetyl-cysteine (NAC), a glutathione precursor, was administered to patients to determine whether increased levels of brain glutathione would improve MMN and by extension NMDA function. A randomized, double-blind, cross-over protocol was conducted, entailing the administration of NAC (2g/day) for 60 days and then placebo for another 60 days (or vice versa). 128-channel AEPs were recorded during a frequency oddball discrimination task at protocol onset, at the point of cross-over, and at the end of the study. At the onset of the protocol, the MMN of patients was significantly impaired compared to sex- and age- matched healthy controls (p=0.003), without any evidence of concomitant P300 component deficits. Treatment with NAC significantly improved MMN generation compared with placebo (p=0.025) without any measurable effects on the P300 component. MMN improvement was observed in the absence of robust changes in assessments of clinical severity, though the latter was observed in a larger and more prolonged clinical study. This pattern suggests that MMN enhancement may precede changes to indices of clinical severity, highlighting the possible utility AEPs as a biomarker of treatment efficacy. The improvement of this functional marker may indicate an important pathway towards new therapeutic strategies that target glutathione dysregulation in schizophrenia.
Drugs | 2008
Bénédicte Verdu; Isabelle Decosterd; Thierry Buclin; Friedrich Stiefel; Alexandre Berney
Chronic pain represents one of the most important public health problems and, in addition to classical analgesics, antidepressants are an essential part of the therapeutic strategy. This article reviews available evidence on the efficacy and safety of antidepressants in major chronic pain conditions; namely, neuropathic pain, headaches, low back pain, fibromyalgia, irritable bowel syndrome (IBS) and cancer pain. Studies, reviews and meta-analyses published from 1991 to March 2008 were retrieved through MEDLINE, PsycINFO and the Cochrane database using numerous key words for pain and antidepressants. In summary, evidence supports the use of tricyclic antidepressants in neuropathic pain, headaches, low back pain, fibromyalgia and IBS. The efficacy of the newer serotonin and norepinephrine reuptake inhibitors is less supported by evidence, but can be recommended in neuropathic pain, migraines and fibromyalgia. To date, evidence does not support an analgesic effect of serotonin reuptake inhibitors, but beneficial effects on well-being were reported in several chronic pain conditions. These results are discussed in the light of current insights in the neurobiology of pain, the reciprocal relationship between pain and depression, and future developments in this field of research.
Blood | 2011
Amina Haouala; Nicolas Widmer; Michel A. Duchosal; Michael Montemurro; Thierry Buclin; Laurent A. Decosterd
Several cancer treatments are shifting from traditional, time-limited, nonspecific cytotoxic chemotherapy cycles to continuous oral treatment with specific protein-targeted therapies. In this line, imatinib mesylate, a selective tyrosine kinases inhibitor (TKI), has excellent efficacy in the treatment of chronic myeloid leukemia. It has opened the way to the development of additional TKIs against chronic myeloid leukemia, including nilotinib and dasatinib. TKIs are prescribed for prolonged periods, often in patients with comorbidities. Therefore, they are regularly co-administered along with treatments at risk of drug-drug interactions. This aspect has been partially addressed so far, calling for a comprehensive review of the published data. We review here the available evidence and pharmacologic mechanisms of interactions between imatinib, dasatinib, and nilotinib and widely prescribed co-medications, including known inhibitors or inducers of cytochromes P450 or drug transporters. Information is mostly available for imatinib mesylate, well introduced in clinical practice. Several pharmacokinetic aspects yet remain insufficiently investigated for these drugs. Regular updates will be mandatory and so is the prospective reporting of unexpected clinical observations.
Embo Molecular Medicine | 2014
Vadim Makarov; Benoit Lechartier; Ming Zhang; João Neres; Astrid M. van der Sar; Susanne A. Raadsen; Ruben C. Hartkoorn; Olga Ryabova; Anthony Vocat; Laurent A. Decosterd; Nicolas Widmer; Thierry Buclin; Wilbert Bitter; Koen Andries; Florence Pojer; Paul J. Dyson; Stewart T. Cole
The benzothiazinone lead compound, BTZ043, kills Mycobacterium tuberculosis by inhibiting the essential flavo‐enzyme DprE1, decaprenylphosphoryl‐beta‐D‐ribose 2‐epimerase. Here, we synthesized a new series of piperazine‐containing benzothiazinones (PBTZ) and show that, like BTZ043, the preclinical candidate PBTZ169 binds covalently to DprE1. The crystal structure of the DprE1‐PBTZ169 complex reveals formation of a semimercaptal adduct with Cys387 in the active site and explains the irreversible inactivation of the enzyme. Compared to BTZ043, PBTZ169 has improved potency, safety and efficacy in zebrafish and mouse models of tuberculosis (TB). When combined with other TB drugs, PBTZ169 showed additive activity against M. tuberculosis in vitro except with bedaquiline (BDQ) where synergy was observed. A new regimen comprising PBTZ169, BDQ and pyrazinamide was found to be more efficacious than the standard three drug treatment in a murine model of chronic disease. PBTZ169 is thus an attractive drug candidate to treat TB in humans.
Clinical Infectious Diseases | 2012
Andres Pascual; Chantal Csajka; Thierry Buclin; Saskia Bolay; Jacques Bille; Thierry Calandra; Oscar Marchetti
BACKGROUND Recommended oral voriconazole (VRC) doses are lower than intravenous doses. Because plasma concentrations impact efficacy and safety of therapy, optimizing individual drug exposure may improve these outcomes. METHODS A population pharmacokinetic analysis (NONMEM) was performed on 505 plasma concentration measurements involving 55 patients with invasive mycoses who received recommended VRC doses. RESULTS A 1-compartment model with first-order absorption and elimination best fitted the data. VRC clearance was 5.2 L/h, the volume of distribution was 92 L, the absorption rate constant was 1.1 hour(-1), and oral bioavailability was 0.63. Severe cholestasis decreased VRC elimination by 52%. A large interpatient variability was observed on clearance (coefficient of variation [CV], 40%) and bioavailability (CV 84%), and an interoccasion variability was observed on bioavailability (CV, 93%). Lack of response to therapy occurred in 12 of 55 patients (22%), and grade 3 neurotoxicity occurred in 5 of 55 patients (9%). A logistic multivariate regression analysis revealed an independent association between VRC trough concentrations and probability of response or neurotoxicity by identifying a therapeutic range of 1.5 mg/L (>85% probability of response) to 4.5 mg/L (<15% probability of neurotoxicity). Population-based simulations with the recommended 200 mg oral or 300 mg intravenous twice-daily regimens predicted probabilities of 49% and 87%, respectively, for achievement of 1.5 mg/L and of 8% and 37%, respectively, for achievement of 4.5 mg/L. With 300-400 mg twice-daily oral doses and 200-300 mg twice-daily intravenous doses, the predicted probabilities of achieving the lower target concentration were 68%-78% for the oral regimen and 70%-87% for the intravenous regimen, and the predicted probabilities of achieving the upper target concentration were 19%-29% for the oral regimen and 18%-37% for the intravenous regimen. CONCLUSIONS Higher oral than intravenous VRC doses, followed by individualized adjustments based on measured plasma concentrations, improve achievement of the therapeutic target that maximizes the probability of therapeutic response and minimizes the probability of neurotoxicity. These findings challenge dose recommendations for VRC.