Thierry De Meeûs
Institut de recherche pour le développement
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Thierry De Meeûs.
Human Biology | 2001
Frédéric Thomas; François Renaud; Eric Benefice; Thierry De Meeûs; Jean-François Guégan
AbstractThe purpose of this study was to review published studies on the variability of age at menarche and age at menopause throughout the world, and to identify the main causes for age variation in the timing of these events. We first present a summary table including mean (or median) values of the age at menarche in 67 countries, and of the age at menopause in 26 countries. General linear models showed that mean age at menarche was strongly linked to the mean female life expectancy, suggesting that one or several variables responsible for inequalities in longevity similarly influenced the onset of menarche. A closer examination of the data revealed that among several variables reflecting living conditions, the factors best explaining the variation in age at menarche were adult illiteracy rate and vegetable calorie consumption. Because adult illiteracy rate has some correlation with the age at which children are involved in physical activities that can be detrimental in terms of energy expenditure, our results suggest that age at menarche reflects more a trend in energy balance than merely nutritional status. In addition, we found the main determinant of age at menopause to be the mean fertility. This study thus suggests that, on a large scale, age at menarche is mainly determined by extrinsic factors such as living conditions, while age at menopause seems to be mainly influenced by intrinsic factors such as the reproductive history of individuals. Finally, these findings suggest that human patterns cannot be addressed solely by traditional, small-scale investigations on single populations. Rather, complementary research on a larger scale, such as this study, may be more appropriate in defining some interesting applications to the practical problems of human ecology.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Virginie Rougeron; Thierry De Meeûs; Mallorie Hide; Etienne Waleckx; Herman Bermudez; Jorge Arevalo; Alejandro Llanos-Cuentas; Jean-Claude Dujardin; Simone De Doncker; Dominique Le Ray; Francisco J. Ayala; Anne-Laure Bañuls
Leishmania species of the subgenus Viannia and especially Leishmania braziliensis are responsible for a large proportion of New World leishmaniasis cases. The reproductive mode of Leishmania species has often been assumed to be predominantly clonal, but remains unsettled. We have investigated the genetic polymorphism at 12 microsatellite loci on 124 human strains of Leishmania braziliensis from 2 countries, Peru and Bolivia. There is substantial genetic diversity, with an average of 12.4 ± 4.4 alleles per locus. There is linkage disequilibrium at a genome-wide scale, as well as a substantial heterozygote deficit (more than 50% the expected value from Hardy−Weinberg equilibrium), which indicates high levels of inbreeding. These observations are inconsistent with a strictly clonal model of reproduction, which implies excess heterozygosity. Moreover, there is large genetic heterogeneity between populations within countries (Wahlund effect), which evinces a strong population structure at a microgeographic scale. Our findings are compatible with the existence of population foci at a microgeographic scale, where clonality alternates with sexuality of an endogamic nature, with possible occasional recombination events between individuals of different genotypes. These findings provide key clues on the ecology and transmission patterns of Leishmania parasites.
Evolution | 2005
Franck Prugnolle; André Théron; Jean Pierre Pointier; Roula Jabbour-Zahab; Philippe Jarne; Patrick Durand; Thierry De Meeûs
Abstract Characterizing host and parasite population genetic structure and estimating gene flow among populations is essential for understanding coevolutionary interactions between hosts and parasites. We examined the population genetic structure of the trematode Schistosoma mansoni and its two host species (the definitive host Rattus rattus and the intermediate host Biomphalaria glabrata) using microsatellite markers. Parasites were sampled from rats. The study was conducted in five sites of the Guadeloupe Island, Lesser Antilles. Mollusks display a pattern of isolation by distance whereas such a pattern is not found neither in schistosomes nor in rats. The comparison of the distribution of genetic variability in S. mansoni and its two host species strongly suggests that migration of parasites is principally determined by that of the vertebrate host in the marshy focus of Guadeloupe. However, the comparison between genetic differentiation values in schistosomes and rats suggests that the efficacy of the schistosome rat‐mediated dispersal between transmission sites is lower than expected given the prevalence, parasitic load and migration rate of rats among sites. This could notably suggest that rat migration rate could be negatively correlated to the age or the infection status of individuals. Models made about the evolution of local adaptation in function of the dispersal rates of hosts and parasites suggest that rats and mollusks should be locally adapted to their parasites.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Mathurin Koffi; Thierry De Meeûs; Bruno Bucheton; Philippe Solano; Mamadou Camara; Dramane Kaba; Gérard Cuny; Francisco J. Ayala; Vincent Jamonneau
Human African trypanosomiasis, or sleeping sickness caused by Trypanosoma brucei gambiense, occurs in Western and Central Africa. T. brucei s.l. displays a huge diversity of adaptations and host specificities, and questions about its reproductive mode, dispersal abilities, and effective size remain under debate. We have investigated genetic variation at 8 microsatellite loci of T. b. gambiense strains isolated from human African trypanosomiasis patients in the Ivory Coast and Guinea, with the aim of knowing how genetic information was partitioned within and between individuals in both temporal and spatial scales. The results indicate that (i) migration of T. b. gambiense group 1 strains does not occur at the scale of West Africa, and that even at a finer scale (e.g., within Guinea) migration is restricted; (ii) effective population sizes of trypanosomes, as reflected by infected hosts, are probably higher than what the epidemiological surveys suggest; and (iii) T. b. gambiense group 1 is most likely a strictly clonally reproducing organism.
Ecology | 1996
François Rousset; Frédéric Thomas; Thierry De Meeûs; François Renaud
Evidence for parasite-induced host mortality from field data remains difficult to obtain. We have developed analytical models to investigate the effects of parasite-induced host mortality on the distribution of macroparasites among individual hosts as a function of host age. Under the assumptions of these models, it is shown that a decrease of the mean parasite load or of its dispersion implies that there is parasite-induced host mortality and that infection rate is variable for different hosts in the population. Observed patterns will depend on the nature of such variation and of the relation between parasite load and host mortality.
Evolution | 2002
Thierry De Meeûs; Lorenza Beati; Christelle Delaye; André Aeschlimann; François Renaud
Abstract.— We analyzed 725 Ixodes ricinus ticks (the principal vector of Lyme disease in Europe) collected in Switzerland in 1995 and 1996 (three and eight samples, respectively) and in Tunisia in 1996 (one sample) with five microsatellite markers. We found highly significant genetic differentiation between Swiss and Tunisian samples but detected almost no differentiation within Switzerland, even between those samples separated by the Alps. Interestingly, we found that I. ricinus females were more genetically related to one another than were males at a local scale, which would indicate a higher dispersal rate of immature males. Possible explanations for these findings in terms of sex‐specific association of ticks with certain hosts (e.g., birds) and their epidemiological consequences are discussed.
Journal of Medical Entomology | 2007
Sophie Ravel; Jean-Pierre Dujardin; Thierry De Meeûs; Laurence Vial; Sophie Thevenon; Laure Guerrini; Issa Sidibé; Philippe Solano
Abstract The impact of landscape fragmentation due to human and climatic mediated factors on the structure of a population of Glossina palpalis gambiensis Vanderplank (Diptera: Glossinidae) was investigated in the Mouhoun river basin, Burkina Faso. Allele frequencies at five microsatellite loci, and metric properties based on 11 wing landmarks, were compared between four populations. The populations originated from the Mouhoun river and one of its tributaries. The average distance between samples was 72 km with the two most widely spaced populations being 216 km apart. The sampling points traversed an ecological cline in terms of rainfall and riverine forest ecotype, along a river enlarging from downstream to upstream and oriented south to north. Microsatellite DNA comparison demonstrated structuring between the populations, but not complete isolation, with an overall Fst = 0.012 (P < 0.001). Wing geometry revealed significant centroid size and shape differences between populations, especially between the two most distant populations. There was no significant correlation between gene flow and geographic distance at this scale, but there was a positive correlation in females between metric distances (wing shape differences) and geographic distances that might be attributed to the cline of environmental conditions. The impact of the fragmentation of riparian landscapes on tsetse population structure is discussed in the context of control campaigns currently promoted by Pan African Tsetse and Trypanosomosis Eradication Campaign.
PLOS Neglected Tropical Diseases | 2009
Philippe Solano; Sophie Ravel; Jérémy Bouyer; Mamadou Camara; Moise S. Kagbadouno; Naomi Dyer; Laëtitia Gardes; Damien Herault; Martin J. Donnelly; Thierry De Meeûs
Background We undertook a population genetics analysis of the tsetse fly Glossina palpalis gambiensis, a major vector of sleeping sickness in West Africa, using microsatellite and mitochondrial DNA markers. Our aims were to estimate effective population size and the degree of isolation between coastal sites on the mainland of Guinea and Loos Islands. The sampling locations encompassed Dubréka, the area with the highest Human African Trypanosomosis (HAT) prevalence in West Africa, mangrove and savannah sites on the mainland, and two islands, Fotoba and Kassa, within the Loos archipelago. These data are discussed with respect to the feasibility and sustainability of control strategies in those sites currently experiencing, or at risk of, sleeping sickness. Principal Findings We found very low migration rates between sites except between those sampled around the Dubréka area that seems to contain a widely dispersed and panmictic population. In the Kassa island samples, various effective population size estimates all converged on surprisingly small values (10<Ne<30) that suggest either a recent bottleneck, and/or other biological or ecological factors such as strong variance in the reproductive success of individuals. Conclusion/Significance Whatever their origin, the small effective population sizes suggest high levels of inbreeding in tsetse flies within the island samples in marked contrast to the large diffuse deme in Dubréka zones. We discuss how these genetic results suggest that different tsetse control strategies should be applied on the mainland and islands.
Molecular Ecology | 2009
Florent Kempf; Thierry Boulinier; Thierry De Meeûs; Céline Arnathau; Karen D. McCoy
Ecological interactions are an important source of rapid evolutionary change and thus may generate a significant portion of novel biodiversity. Such changes may be particularly prevalent in parasites, where hosts can induce strong selection for adaptation. To understand the relative frequency at which host‐associated divergences occur, it is essential to examine the evolutionary history of the divergence process, particularly when it is occurring over large geographical scales where both geographical and host‐associated isolation may playa part. In this study, we use population genetics and phylogeography to study the evolutionary history of host‐associated divergence in the seabird tick Ixodes uriae (Acari, Ixodidae). We compare results from microsatellite markers that reflect more ecological timescales with a conserved mitochondrial gene (COIII) that reflects more ancient divergence events. Population structure based on microsatellites showed clear evidence of host‐associated divergence in all colonies examined. However, isolated populations of the same host type did not always group together in overall analyses and the genetic differentiation among sympatric host races was highly variable. In contrast, little host or geographical structure was found for the mitochondrial gene fragment. These results suggest that host race formation in I. uriae is a recent phenomenon, that it may have occurred several times and that local interactions are at different points in the divergence process. Rapid divergence in I. uriae implies a strong interaction with its local host species, an interaction that will alter the ecological dynamics of the system and modify the epidemiological landscape of circulating micropathogens.
BMC Bioinformatics | 2009
Thierry De Meeûs; Jean-François Guégan; Anatoly T. Teriokhin
BackgroundCombining multiple independent tests, when all test the same hypothesis and in the same direction, has been the subject of several approaches. Besides the inappropriate (in this case) Bonferroni procedure, the Fishers method has been widely used, in particular in population genetics. This last method has nevertheless been challenged by the SGM (symmetry around the geometric mean) and Stouffers Z-transformed methods that are less sensitive to asymmetry and deviations from uniformity of the distribution of the partial P-values. Performances of these different procedures were never compared on proportional data such as those currently used in population genetics.ResultsWe present new software that implements a more recent method, the generalised binomial procedure, which tests for the deviation of the observed proportion of P-values lying under a chosen threshold from the expected proportion of such P-values under the null hypothesis. The respective performances of all available procedures were evaluated using simulated data under the null hypothesis with standard P-values distribution (differentiation tests). All procedures more or less behaved consistently with ~5% significant tests at α = 0.05. Then, linkage disequilibrium tests with increasing signal strength (rate of clonal reproduction), known to generate highly non-standard P-value distributions are undertaken and finally real population genetics data are analysed. In these cases, all procedures appear, more or less equally, very conservative, though SGM seems slightly more conservative.ConclusionBased on our results and those discussed in the literature we conclude that the generalised binomial and Stouffers Z procedures should be preferred and Z when the number of tests is very small. The more conservative SGM might still be appropriate for meta-analyses when a strong publication bias in favour of significant results is expected to inflate type 2 error.