Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thierry Fourcaud is active.

Publication


Featured researches published by Thierry Fourcaud.


Plant and Soil | 2009

Desirable plant root traits for protecting natural and engineered slopes against landslides

Alexia Stokes; Claire Atger; A.G. Bengough; Thierry Fourcaud; Roy C. Sidle

Slope stability models traditionally use simple indicators of root system structure and strength when vegetation is included as a factor. However, additional root system traits should be considered when managing vegetated slopes to avoid shallow substrate mass movement. Traits including root distribution, length, orientation and diameter are recognized as influencing soil fixation, but do not consider the spatial and temporal dimensions of roots within a system. Thick roots act like soil nails on slopes and the spatial position of these thick roots determines the arrangement of the associated thin roots. Thin roots act in tension during failure on slopes and if they traverse the potential shear zone, provide a major contribution in protecting against landslides. We discuss how root traits change depending on ontogeny and climate, how traits are affected by the local soil environment and the types of plastic responses expressed by the plant. How a landslide engineer can use this information when considering slope stability and management strategies is discussed, along with perspectives for future research. This review encompasses many ideas, data and concepts presented at the Second International Conference ‘Ground Bio- and Eco-engineering: The Use of Vegetation to Improve Slope Stability—ICGBE2’ held at Beijing, China, 14–18 July 2008. Several papers from this conference are published in this edition of Plant and Soil.


Annals of Botany | 2007

Plant Growth Modelling and Applications: The Increasing Importance of Plant Architecture in Growth Models

Thierry Fourcaud; Xiaopeng Zhang; Alexia Stokes; Hans Lambers; Christian Körner

BACKGROUND Modelling plant growth allows us to test hypotheses and carry out virtual experiments concerning plant growth processes that could otherwise take years in field conditions. The visualization of growth simulations allows us to see directly and vividly the outcome of a given model and provides us with an instructive tool useful for agronomists and foresters, as well as for teaching. Functional-structural (FS) plant growth models are nowadays particularly important for integrating biological processes with environmental conditions in 3-D virtual plants, and provide the basis for more advanced research in plant sciences. SCOPE In this viewpoint paper, we ask the following questions. Are we modelling the correct processes that drive plant growth, and is growth driven mostly by sink or source activity? In current models, is the importance of soil resources (nutrients, water, temperature and their interaction with meristematic activity) considered adequately? Do classic models account for architectural adjustment as well as integrating the fundamental principles of development? Whilst answering these questions with the available data in the literature, we put forward the opinion that plant architecture and sink activity must be pushed to the centre of plant growth models. In natural conditions, sinks will more often drive growth than source activity, because sink activity is often controlled by finite soil resources or developmental constraints. PMA06: This viewpoint paper also serves as an introduction to this Special Issue devoted to plant growth modelling, which includes new research covering areas stretching from cell growth to biomechanics. All papers were presented at the Second International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications (PMA06), held in Beijing, China, from 13-17 November, 2006. Although a large number of papers are devoted to FS models of agricultural and forest crop species, physiological and genetic processes have recently been included and point the way to a new direction in plant modelling research.


Plant and Soil | 2014

Ecological mitigation of hillslope instability: ten key issues facing researchers and practitioners

Alexia Stokes; G. B. Douglas; Thierry Fourcaud; Filippo Giadrossich; Clayton Gillies; Thomas Hubble; John H. Kim; Kenneth W. Loades; Zhun Mao; Ian R. McIvor; Slobodan B. Mickovski; Stephen J. Mitchell; Normaniza Osman; Chris Phillips; Jean Poesen; Dave Polster; Federico Preti; Pierre Raymond; Freddy Rey; Massimiliano Schwarz; Lawrence R. Walker

BackgroundPlants alter their environment in a number of ways. With correct management, plant communities can positively impact soil degradation processes such as surface erosion and shallow landslides. However, there are major gaps in our understanding of physical and ecological processes on hillslopes, and the application of research to restoration and engineering projects.ScopeTo identify the key issues of concern to researchers and practitioners involved in designing and implementing projects to mitigate hillslope instability, we organized a discussion during the Third International Conference on Soil Bio- and Eco-Engineering: The Use of Vegetation to Improve Slope Stability, Vancouver, Canada, July 2012. The facilitators asked delegates to answer three questions: (i) what do practitioners need from science? (ii) what are some of the key knowledge gaps? (iii) what ideas do you have for future collaborative research projects between practitioners and researchers? From this discussion, ten key issues were identified, considered as the kernel of future studies concerning the impact of vegetation on slope stability and erosion processes. Each issue is described and a discussion at the end of this paper addresses how we can augment the use of ecological engineering techniques for mitigating slope instability.ConclusionsWe show that through fundamental and applied research in related fields (e.g., soil formation and biogeochemistry, hydrology and microbial ecology), reliable data can be obtained for use by practitioners seeking adapted solutions for a given site. Through fieldwork, accessible databases, modelling and collaborative projects, awareness and acceptance of the use of plant material in slope restoration projects should increase significantly, particularly in the civil and geotechnical communities.


Slope stability and erosion control: Ecotechnological solutions | 2008

How vegetation reinforces soil on slopes

Alexia Stokes; Je Norris; L.P.H. van Beek; Thom Bogaard; Erik Cammeraat; Slobodan B. Mickovski; Anthony Jenner; Antonino Di Iorio; Thierry Fourcaud

Once the instability process e.g. erosion or landslides has been identified on a slope, the type of vegetation to best reinforce the soil can then be determined. Plants improve slope stability through changes in mechanical and hydrological properties of the root-soil matrix. The architecture of a plants root system will influence strongly these reinforcing properties. We explain how root morphology and biomechanics changes between species. An overview of vegetation effects on slope hydrology is given, along with an update on the use of models to predict the influence of vegetation on mechanical and hydrological properties of soil on slopes. In conclusion, the optimal root system types for improving slope stability are suggested.


Trees-structure and Function | 2003

Numerical modelling of shape regulation and growth stresses in trees. II. Implementation in the AMAPpara software and simulation of tree growth

Thierry Fourcaud; Frédéric Blaise; Patrick Lac; Patrick Castera; Philippe De Reffye

Abstract. The main objective of this paper is to present the results of a study of the interactions between the growth and design of a tree with regards to biomechanical factors at the plant level. A numerical incremental model dedicated to the calculation of tree mechanical behaviour has been integrated in the plant architecture simulation software AMAPpara. At any stage of tree growth, a new equilibrium was calculated considering the weight increment applied on the structure, i.e. the mass of new wood layers and vegetative elements, as well as the biomechanical reaction caused by cell maturation strains in both normal and reaction wood. The resulting incremental displacements allowed the tree shape to be modified. The field of growth stresses was calculated within the stem, using a cumulative process taking into consideration the past history of each growth ring. The simulation results of trunk and branch shape, as well as internal stresses, were examined after consideration of different growth strategies. A block of trees was also simulated in order to show the influence of spatial competition on stem curvature and the variability in growth stress.


American Journal of Botany | 2009

Crown structure and wood properties: Influence on tree sway and response to high winds

Damien Sellier; Thierry Fourcaud

Wind can alter plant growth and cause extensive, irreversible damage in forested areas. To better understand how to mitigate the effects of wind action, we investigated the sensitivity of tree aerodynamic behavior to the material and geometrical factors characterizing the aerial system. The mechanical response of a 35-yr-old maritime pine (Pinus pinaster, Pinaceae) submitted to static and dynamic wind loads is simulated with a finite element model. The branching structure is represented in three dimensions. Factor effects are evaluated using a fractional experimental design. Results show that material properties play only a limited role in tree dynamics. In contrast, small morphological variations can produce extreme behaviors such as either very little or nearly critical dissipation of stem oscillations. Slender trees are shown to be relatively more vulnerable to stem breakage than uprooting. Dynamic loading leads to deflections and forces up to 20% higher near the base of the tree than those calculated for a static loading of similar magnitude. Effects of branch geometry on dynamic amplification are substantial yet not linear. The flexibility of the aerial system is found to be critical to reducing the resistance to the airflow and thus to minimizing the risk of failure.


American Journal of Botany | 2007

A generic 3D finite element model of tree anchorage integrating soil mechanics and real root system architecture.

Lionel X. Dupuy; Thierry Fourcaud; Patrick Lac; Alexia Stokes

Understanding the mechanism of tree anchorage in a forest is a priority because of the increase in wind storms in recent years and their projected recurrence as a consequence of global warming. To characterize anchorage mechanisms during tree uprooting, we developed a generic finite element model where real three-dimensional (3D) root system architectures were represented in a 3D soil. The model was used to simulate tree overturning during wind loading, and results compared with real data from two poplar species (Populus trichocarpa and P. deltoides). These trees were winched sideways until failure, and uprooting force and root architecture measured. The uprooting force was higher for P. deltoides than P. trichocarpa, probably due to its higher root volume and thicker lateral roots. Results from the model showed that soil type influences failure modes. In frictional soils, e.g., sandy soils, plastic failure of the soil occurred mainly on the windward side of the tree. In cohesive soils, e.g., clay soils, a more symmetrical slip surface was formed. Root systems were more resistant to uprooting in cohesive soil than in frictional soil. Applications of this generic model include virtual uprooting experiments, where each component of anchorage can be tested individually.


Trees-structure and Function | 2005

Influence of wind loading on root system development and architecture in oak (Quercus robur L.) seedlings

Elisabetta Tamasi; Alexia Stokes; Bruno Lasserre; Frédéric Danjon; Stéphane Berthier; Thierry Fourcaud; Donato Chiatante

The effect of wind loading on seedlings of English oak (Quercus robur L.) was investigated. Instead of using a traditional wind tunnel, an innovative ventilation system was designed. This device was set up in the field and composed of a rotating arm supporting an electrical fan, which emitted an air current similar to that of wind loading. Oaks were sown from seed in a circle around the device. A block of control plants was situated nearby, and was not subjected to artificial wind loading. After 7 months, 16 plants from each treatment were excavated, and root architecture and morphological characteristics measured using a 3D digitiser. The resulting geometrical and topological data were then analysed using AMAPmod software. Results showed that total lateral root number and length in wind stressed plants were over two times greater than that in control trees. However, total lateral root volume did not differ significantly between treatments. In comparing lateral root characters between the two populations, it was found that mean root length, diameter and volume were similar between the two treatments. In trees subjected to wind loading, an accentuated asymmetry of root distribution and mean root length was found between the windward and leeward sides of the root system, with windward roots being significantly more numerous and longer than leeward roots. However, no differences were found when the two sectors perpendicular to the wind direction were compared. Mean tap root length was significantly higher in control samples compared to wind stressed plants, whilst mean diameter was greater in the latter. Wind loading appears to result in increased growth of lateral roots at the expense of the tap root. Development of the lateral root system may therefore ensure better anchorage of young trees subjected to wind loading under certain conditions.


Annals of Botany | 2011

Linking carbon supply to root cell-wall chemistry and mechanics at high altitudes in Abies georgei

Marie Genet; Maingcai Li; Tianxiang Luo; Thierry Fourcaud; Anne Clément-Vidal; Alexia Stokes

BACKGROUND AND AIMS The mobile carbon supply to different compartments of a tree is affected by climate, but its impact on cell-wall chemistry and mechanics remains unknown. To understand better the variability in root growth and biomechanics in mountain forests subjected to substrate mass movement, we investigated root chemical and mechanical properties of mature Abies georgei var. smithii (Smith fir) growing at different elevations on the Tibet-Qinghai Plateau. METHODS Thin and fine roots (0·1-4·0 mm in diameter) were sampled at three different elevations (3480, 3900 and 4330 m, the last corresponding to the treeline). Tensile resistance of roots of different diameter classes was measured along with holocellulose and non-structural carbon (NSC) content. KEY RESULTS The mean force necessary to break roots in tension decreased significantly with increasing altitude and was attributed to a decrease in holocellulose content. Holocellulose was significantly lower in roots at the treeline (29·5 ± 1·3 %) compared with those at 3480 m (39·1 ± 1·0 %). Roots also differed significantly in NSC, with 35·6 ± 4·1 mg g(-1) dry mass of mean total soluble sugars in roots at 3480 m and 18·8 ± 2·1 mg g(-1) dry mass in roots at the treeline. CONCLUSIONS Root mechanical resistance, holocellulose and NSC content all decreased with increasing altitude. Holocellulose is made up principally of cellulose, the biosynthesis of which depends largely on NSC supply. Plants synthesize cellulose when conditions are optimal and NSC is not limiting. Thus, cellulose synthesis in the thin and fine roots measured in our study is probably not a priority in mature trees growing at very high altitudes, where climatic factors will be limiting for growth. Root NSC stocks at the treeline may be depleted through over-demand for carbon supply due to increased fine root production or winter root growth.


BMC Plant Biology | 2010

(Not) Keeping the stem straight: a proteomic analysis of maritime pine seedlings undergoing phototropism and gravitropism

Raúl Herrera; Catherine Krier; Céline Lalanne; El ElHadji Maodo Ba; Alexia Stokes; Franck Salin; Thierry Fourcaud; Stéphane Claverol; Christophe Plomion

BackgroundPlants are subjected to continuous stimuli from the environment and have evolved an ability to respond through various growth and development processes. Phototropism and gravitropism responses enable the plant to reorient with regard to light and gravity.ResultsWe quantified the speed of maritime pine seedlings to reorient with regard to light and gravity over 22 days. Seedlings were inclined at 15, 30 and 45 degrees with vertical plants as controls. A lateral light source illuminated the plants and stem movement over time was recorded. Depending on the initial angle of stem lean, the apical response to the lateral light source differed. In control and 15° inclined plants, the apex turned directly towards the light source after only 2 h. In plants inclined at 30° and 45°, the apex first reoriented in the vertical plane after 2 h, then turned towards the light source after 24 h. Two-dimensional gel electrophoresis coupled with mass spectrometry was then used to describe the molecular response of stem bending involved in photo- and gravi-tropism after 22 hr and 8 days of treatment. A total of 486 spots were quantitatively analyzed using image analysis software. Significant changes were determined in the protein accumulation of 68 protein spots. Early response gravitropic associated proteins were identified, which are known to function in energy related and primary metabolism. A group of thirty eight proteins were found to be involved in primary metabolism and energy related metabolic pathways. Degradation of Rubisco was implicated in some protein shifts.ConclusionsOur study demonstrates a rapid gravitropic response in apices of maritime pine seedlings inclined >30°. Little or no response was observed at the stem bases of the same plants. The primary gravitropic response is concomitant with a modification of the proteome, consisting of an over accumulation of energy and metabolism associated proteins, which may allow the stem to reorient rapidly after bending.

Collaboration


Dive into the Thierry Fourcaud's collaboration.

Top Co-Authors

Avatar

Alexia Stokes

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar

Patrick Lac

University of Bordeaux

View shared research outputs
Top Co-Authors

Avatar

Yves Dumont

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Frédéric Blaise

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frédéric Danjon

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

François Houllier

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ming Yang

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Damien Sellier

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge