Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thierry Gallopin is active.

Publication


Featured researches published by Thierry Gallopin.


Nature | 2000

Identification of sleep-promoting neurons in vitro

Thierry Gallopin; Patrice Fort; Emmanuel Eggermann; Bruno Cauli; Pierre-Hervé Luppi; Jean Rossier; Etienne Audinat; Michel Muhlethaler; Mauro Serafin

The neurons responsible for the onset of sleep are thought to be located in the preoptic area and more specifically, in the ventrolateral preoptic nucleus (VLPO). Here we identify sleep-promoting neurons in vitro and show that they represent an homogeneous population of cells that must be inhibited by systems of arousal during the waking state. We find that two-thirds of the VLPO neurons are multipolar triangular cells that show a low-threshold spike. This proportion matches that of cells active during sleep in the same region. We then show, using single-cell reverse transcriptase followed by polymerase chain reaction, that these neurons probably contain γ-aminobutyric acid (GABA). We also show that these neurons are inhibited by noradrenaline and acetylcholine, both of which are transmitters of wakefulness. As most of these cells are also inhibited by serotonin but unaffected by histamine, their overall inhibition by transmitters of wakefulness is in agreement with their relative inactivity during waking with respect to sleep. We propose that the reciprocal inhibitory interaction of such VLPO neurons with the noradrenergic, serotoninergic and cholinergic waking systems to which they project is a key factor for promoting sleep.


The Journal of Neuroscience | 2009

Classification of NPY-expressing neocortical interneurons.

Anastassios Karagiannis; Thierry Gallopin; Csaba Dávid; Demian Battaglia; Hélène Geoffroy; Jean Rossier; Elizabeth M. C. Hillman; Jochen F. Staiger; Bruno Cauli

Neuropeptide Y (NPY) is an abundant neuropeptide of the neocortex involved in numerous physiological and pathological processes. Because of the large electrophysiological, molecular, and morphological diversity of NPY-expressing neurons their precise identity remains unclear. To define distinct populations of NPY neurons we characterized, in acute slices of rat barrel cortex, 200 cortical neurons of layers I–IV by means of whole-cell patch-clamp recordings, biocytin labeling, and single-cell reverse transcriptase-PCR designed to probe for the expression of well established molecular markers for cortical neurons. To classify reliably cortical NPY neurons, we used and compared different unsupervised clustering algorithms based on laminar location and electrophysiological and molecular properties. These classification schemes confirmed that NPY neurons are nearly exclusively GABAergic and consistently disclosed three main types of NPY-expressing interneurons. (1) Neurogliaform-like neurons exhibiting a dense axonal arbor, were the most frequent and superficial, and substantially expressed the neuronal isoform of nitric oxide synthase. (2) Martinotti-like cells characterized by an ascending axon ramifying in layer I coexpressed somatostatin and were the most excitable type. (3) Among fast-spiking and parvalbumin-positive basket cells, NPY expression was correlated with pronounced spike latency. By clarifying the diversity of cortical NPY neurons, this study establishes a basis for future investigations aiming at elucidating their physiological roles.


Neuroscience | 2005

The endogenous somnogen adenosine excites a subset of sleep-promoting neurons via A2A receptors in the ventrolateral preoptic nucleus.

Thierry Gallopin; Pierre-Hervé Luppi; Bruno Cauli; Yoshihiro Urade; Jean Rossier; Osamu Hayaishi; Bertrand Lambolez; Patrice Fort

Recent research has shown that neurons in the ventrolateral preoptic nucleus are crucial for sleep by inhibiting wake-promoting systems, but the process that triggers their activation at sleep onset remains to be established. Since evidence indicates that sleep induced by adenosine, an endogenous sleep-promoting substance, requires activation of brain A(2A) receptors, we examined the hypothesis that adenosine could activate ventrolateral preoptic nucleus sleep neurons via A(2A) adenosine receptors in rat brain slices. Following on from our initial in vitro identification of these neurons as uniformly inhibited by noradrenaline and acetylcholine arousal transmitters, we established that the ventrolateral preoptic nucleus comprises two intermingled subtypes of sleep neurons, differing in their firing responses to serotonin, inducing either an inhibition (Type-1 cells) or an excitation (Type-2 cells). Since both cell types contained galanin and expressed glutamic acid decarboxylase-65/67 mRNAs, they potentially correspond to the sleep promoting neurons inhibiting arousal systems. Our pharmacological investigations using A(1) and A(2A) adenosine receptors agonists and antagonists further revealed that only Type-2 neurons were excited by adenosine via a postsynaptic activation of A(2A) adenosine receptors. Hence, the present study is the first demonstration of a direct activation of the sleep neurons by adenosine. Our results further support the cellular and functional heterogeneity of the sleep neurons, which could enable their differential contribution to the regulation of sleep. Adenosine and serotonin progressively accumulate during arousal. We propose that Type-2 neurons, which respond to these homeostatic signals by increasing their firing are involved in sleep induction. In contrast, Type-1 neurons would likely play a role in the consolidation of sleep.


Cerebral Cortex | 2010

Serotonin 3A Receptor Subtype as an Early and Protracted Marker of Cortical Interneuron Subpopulations

Ksenija Vucurovic; Thierry Gallopin; Isabelle Férézou; Armelle Rancillac; Pascal Chameau; Johannes A. van Hooft; Hélène Geoffroy; Hannah Monyer; Jean Rossier; Tania Vitalis

To identify neocortical neurons expressing the type 3 serotonergic receptor, here we used transgenic mice expressing the enhanced green fluorescent protein (GFP) under the control of the 5-HT3A promoter (5-HT3A:GFP mice). By means of whole-cell patch-clamp recordings, biocytin labeling, and single-cell reversed-transcriptase polymerase chain reaction on acute brain slices of 5-HT3A:GFP mice, we identified 2 populations of 5-HT3A-expressing interneurons within the somatosensory cortex. The first population was characterized by the frequent expression of the vasoactive intestinal peptide and a typical bipolar/bitufted morphology, whereas the second population expressed predominantly the neuropeptide Y and exhibited more complex dendritic arborizations. Most interneurons of this second group appeared very similar to neurogliaform cells according to their electrophysiological, molecular, and morphological properties. The combination of 5-bromo-2-deoxyuridine injections with 5-HT3A mRNA detection showed that cortical 5-HT3A interneurons are generated around embryonic day 14.5. Although at this stage the 5-HT3A receptor subunit is expressed in both the caudal ganglionic eminence and the entopeduncular area, homochronic in utero grafts experiments revealed that cortical 5-HT3A interneurons are mainly generated in the caudal ganglionic eminence. This protracted expression of the 5-HT3A subunit allowed us to study specific cortical interneuron populations from their birth to their final functional phenotype.


Journal of Neurophysiology | 2009

Glutamatergic Nonpyramidal Neurons From Neocortical Layer VI and Their Comparison With Pyramidal and Spiny Stellate Neurons

Sofija Andjelic; Thierry Gallopin; Bruno Cauli; Elisa L. Hill; Lisa Roux; Sammy Badr; Emilie Hu; Gábor Tamás; Bertrand Lambolez

The deeper part of neocortical layer VI is dominated by nonpyramidal neurons, which lack a prominent vertically ascending dendrite and predominantly establish corticocortical connections. These neurons were studied in rat neocortical slices using patch-clamp, single-cell reverse transcription-polymerase chain reaction, and biocytin labeling. The majority of these neurons expressed the vesicular glutamate transporter but not glutamic acid decarboxylase, suggesting that a high proportion of layer VI nonpyramidal neurons are glutamatergic. Indeed, they exhibited numerous dendritic spines and established asymmetrical synapses. Our sample of glutamatergic nonpyramidal neurons displayed a wide variety of somatodendritic morphologies and a subset of these cells expressed the Nurr1 mRNA, a marker for ipsilateral, but not commissural corticocortical projection neurons in layer VI. Comparison with spiny stellate and pyramidal neurons from other layers showed that glutamatergic neurons consistently exhibited a low occurrence of GABAergic interneuron markers and regular spiking firing patterns. Analysis of electrophysiological diversity using unsupervised clustering disclosed three groups of cells. Layer V pyramidal neurons were segregated into a first group, whereas a second group consisted of a subpopulation of layer VI neurons exhibiting tonic firing. A third heterogeneous cluster comprised spiny stellate, layer II/III pyramidal, and layer VI neurons exhibiting adaptive firing. The segregation of layer VI neurons in two different clusters did not correlate either with their somatodendritic morphologies or with Nurr1 expression. Our results suggest that electrophysiological similarities between neocortical glutamatergic neurons extend beyond layer positioning, somatodendritic morphology, and projection specificity.


Brain | 2015

Genetic manipulation of adult-born hippocampal neurons rescues memory in a mouse model of Alzheimer’s disease

Kevin Richetin; Clémence Leclerc; Nicolas Toni; Thierry Gallopin; Stéphane Pech; Laurent Roybon; Claire Rampon

In adult mammals, neural progenitors located in the dentate gyrus retain their ability to generate neurons and glia throughout lifetime. In rodents, increased production of new granule neurons is associated with improved memory capacities, while decreased hippocampal neurogenesis results in impaired memory performance in several memory tasks. In mouse models of Alzheimers disease, neurogenesis is impaired and the granule neurons that are generated fail to integrate existing networks. Thus, enhancing neurogenesis should improve functional plasticity in the hippocampus and restore cognitive deficits in these mice. Here, we performed a screen of transcription factors that could potentially enhance adult hippocampal neurogenesis. We identified Neurod1 as a robust neuronal determinant with the capability to direct hippocampal progenitors towards an exclusive granule neuron fate. Importantly, Neurod1 also accelerated neuronal maturation and functional integration of new neurons during the period of their maturation when they contribute to memory processes. When tested in an APPxPS1 mouse model of Alzheimers disease, directed expression of Neurod1 in cycling hippocampal progenitors conspicuously reduced dendritic spine density deficits on new hippocampal neurons, to the same level as that observed in healthy age-matched control animals. Remarkably, this population of highly connected new neurons was sufficient to restore spatial memory in these diseased mice. Collectively our findings demonstrate that endogenous neural stem cells of the diseased brain can be manipulated to become new neurons that could allow cognitive improvement.


Frontiers in Neural Circuits | 2012

Characterization of Type I and Type II nNOS-Expressing Interneurons in the Barrel Cortex of Mouse

Quentin Perrenoud; Hélène Geoffroy; Benjamin Gauthier; Armelle Rancillac; Fabienne Alfonsi; Nicoletta Kessaris; Jean Rossier; Tania Vitalis; Thierry Gallopin

In the neocortex, neuronal nitric oxide (NO) synthase (nNOS) is essentially expressed in two classes of GABAergic neurons: type I neurons displaying high levels of expression and type II neurons displaying weaker expression. Using immunocytochemistry in mice expressing GFP under the control of the glutamic acid decarboxylase 67k (GAD67) promoter, we studied the distribution of type I and type II neurons in the barrel cortex and their expression of parvalbumin (PV), somatostatin (SOM), and vasoactive intestinal peptide (VIP). We found that type I neurons were predominantly located in deeper layers and expressed SOM (91.5%) while type II neurons were concentrated in layer II/III and VI and expressed PV (17.7%), SOM (18.7%), and VIP (10.2%). We then characterized neurons expressing nNOS mRNA (n = 42 cells) ex vivo, using whole-cell recordings coupled to single-cell reverse transcription-PCR and biocytin labeling. Unsupervised cluster analysis of this sample disclosed four classes. One cluster (n = 7) corresponded to large, deep layer neurons, displaying a high expression of SOM (85.7%) and was thus very likely to correspond to type I neurons. The three other clusters were identified as putative type II cells and corresponded to neurogliaform-like interneurons (n = 19), deep layer neurons expressing PV or SOM (n = 9), and neurons expressing VIP (n = 7). Finally, we performed nNOS immunohistochemistry on mouse lines in which GFP labeling revealed the expression of two specific developmental genes (Lhx6 and 5-HT3A). We found that type I neurons expressed Lhx6 but never 5-HT3A, indicating that they originate in the medial ganglionic eminence (MGE). Type II neurons expressed Lhx6 (63%) and 5-HT3A (34.4%) supporting their derivation either from the MGE or from the caudal ganglionic eminence (CGE) and the entopeduncular and dorsal preoptic areas. Together, our results in the barrel cortex of mouse support the view that type I neurons form a specific class of SOM-expressing neurons while type II neurons comprise at least three classes.


Molecular Psychiatry | 2015

Cortical fast-spiking parvalbumin interneurons enwrapped in the perineuronal net express the metallopeptidases Adamts8, Adamts15 and Neprilysin

Jean Rossier; Amy Bernard; J-H Cabungcal; Quentin Perrenoud; A Savoye; Thierry Gallopin; Michael Hawrylycz; M Cuénod; K Do; A Urban; Ed S Lein

The in situ hybridization Allen Mouse Brain Atlas was mined for proteases expressed in the somatosensory cerebral cortex. Among the 480 genes coding for protease/peptidases, only four were found enriched in cortical interneurons: Reln coding for reelin; Adamts8 and Adamts15 belonging to the class of metzincin proteases involved in reshaping the perineuronal net (PNN) and Mme encoding for Neprilysin, the enzyme degrading amyloid β-peptides. The pattern of expression of metalloproteases (MPs) was analyzed by single-cell reverse transcriptase multiplex PCR after patch clamp and was compared with the expression of 10 canonical interneurons markers and 12 additional genes from the Allen Atlas. Clustering of these genes by K-means algorithm displays five distinct clusters. Among these five clusters, two fast-spiking interneuron clusters expressing the calcium-binding protein Pvalb were identified, one co-expressing Pvalb with Sst (PV-Sst) and another co-expressing Pvalb with three metallopeptidases Adamts8, Adamts15 and Mme (PV-MP). By using Wisteria floribunda agglutinin, a specific marker for PNN, PV-MP interneurons were found surrounded by PNN, whereas the ones expressing Sst, PV-Sst, were not.


Cerebral Cortex | 2013

Diversity of GABAergic Interneurons in Layer VIa and VIb of Mouse Barrel Cortex

Quentin Perrenoud; Jean Rossier; Hélène Geoffroy; Tania Vitalis; Thierry Gallopin

Neocortical layer VI modulates the thalamocortical transfer of information and has a significant impact on sensory processing. This function implicates local γ-aminobutyric acidergic (GABAergic) interneurons that have only been partly described at the present time. Here, we characterized 85 layer VI GABAergic interneurons in acute slices of mouse somatosensory barrel cortex, using whole-cell current-clamp recordings, single-cell reverse transcription-polymerase chain reaction, and biocytin labeling followed by Neurolucida reconstructions. Unsupervised clustering based on electrophysiological molecular and morphological properties disclosed 4 types of interneurons. The 2 major classes were fast-spiking cells transcribing parvalbumin (PV) (51%) and adapting interneurons transcribing somatostatin (SOM) (26%). The third population (18%) transcribed neuropeptide Y (NPY) and appeared very similar to neurogliaform cells. The last class (5%) was constituted by well-segregated GABAergic interneurons transcribing vasoactive intestinal peptide (VIP). Using transgenic mice expressing GFP under the control of the glutamic acid decarboxylase 67k (GAD67) promoter, we investigated the densities of GABAergic cells immunolabeled against PV, SOM, VIP, and NPY through the depth of layer VI. This analysis revealed that PV and NPY translating interneurons concentrate in the upper and lower parts of layer VI, respectively. This study provides an extensive characterization of the properties of layer VI interneurons.


Cerebral Cortex | 2011

VIP, CRF, and PACAP Act at Distinct Receptors to Elicit Different cAMP/PKA Dynamics in the Neocortex

Emilie Hu; Lynda Demmou; Bruno Cauli; Thierry Gallopin; Hélène Geoffroy; Ronald M. Harris-Warrick; Danièle Paupardin-Tritsch; Bertrand Lambolez; Pierre Vincent; Régine Hepp

The functional significance of diverse neuropeptide coexpression and convergence onto common second messenger pathways remains unclear. To address this question, we characterized responses to corticotropin-releasing factor (CRF), pituitary adenylate cyclase-activating peptide (PACAP), and vasoactive intestinal peptide (VIP) in rat neocortical slices using optical recordings of cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA) sensors, patch-clamp, and single-cell reverse transcription-polymerase chain reaction. Responses of pyramidal neurons to the 3 neuropeptides markedly differed in time-course and amplitude. Effects of these neuropeptides on the PKA-sensitive slow afterhyperpolarization current were consistent with those observed with cAMP/PKA sensors. CRF-1 receptors, primarily expressed in pyramidal cells, reportedly mediate the neocortical effects of CRF. PACAP and VIP activated distinct PAC1 and VPAC1 receptors, respectively. Indeed, a selective VPAC1 antagonist prevented VIP responses but had a minor effect on PACAP responses, which were mimicked by a specific PAC1 agonist. While PAC1 and VPAC1 were coexpressed in pyramidal cells, PAC1 expression was also frequently detected in interneurons, suggesting that PACAP has widespread effects on the neuronal network. Our results suggest that VIP and CRF, originating from interneurons, and PACAP, expressed mainly by pyramidal cells, finely tune the excitability and gene expression in the neocortical network via distinct cAMP/PKA-mediated effects.

Collaboration


Dive into the Thierry Gallopin's collaboration.

Top Co-Authors

Avatar

Hélène Geoffroy

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Jean Rossier

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Armelle Rancillac

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Bruno Cauli

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Quentin Perrenoud

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar

Bertrand Lambolez

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Tania Vitalis

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Catherine Drogou

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elisa L. Hill

École Normale Supérieure

View shared research outputs
Researchain Logo
Decentralizing Knowledge