Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thierry J. Heger is active.

Publication


Featured researches published by Thierry J. Heger.


Optics Express | 2006

Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba

Florian Charrière; Nicolas Pavillon; Tristan Colomb; Christian Depeursinge; Thierry J. Heger; Edward A. D. Mitchell; Pierre Marquet; Benjamin Rappaz

This paper presents an optical diffraction tomography technique based on digital holographic microscopy. Quantitative 2-dimensional phase images are acquired for regularly-spaced angular positions of the specimen covering a total angle of pi, allowing to built 3-dimensional quantitative refractive index distributions by an inverse Radon transform. A 20x magnification allows a resolution better than 3 microm in all three dimensions, with accuracy better than 0.01 for the refractive index measurements. This technique is for the first time to our knowledge applied to living specimen (testate amoeba, Protista). Morphometric measurements are extracted from the tomographic reconstructions, showing that the commonly used method for testate amoeba biovolume evaluation leads to systematic under evaluations by about 50%.


Protist | 2012

COI Barcoding of Nebelid Testate Amoebae (Amoebozoa: Arcellinida): Extensive Cryptic Diversity and Redefinition of the Hyalospheniidae Schultze

Anush Kosakyan; Thierry J. Heger; Brian S. Leander; Milcho Todorov; Edward A. D. Mitchell; Enrique Lara

We used Cytochrome Oxidase Subunit 1 (COI) to assess the phylogenetic relationships and taxonomy of Nebela sensu stricto and similar taxa (Nebela group, Arcellinida) in order to clarify the taxonomic validity of morphological characters. The COI data not only successfully separated all studied morphospecies but also revealed the existence of several potential cryptic species. The taxonomic implications of the results are: (1) Genus Nebela is paraphyletic and will need to be split into at least two monophyletic assemblages when taxon sampling is further expanded. (2) Genus Quadrulella, one of the few arcellinid genera building its shell from self-secreted siliceous elements, and the mixotrophic Hyalosphenia papilio branch within the Nebela group in agreement with the general morphology of their shell and the presence of an organic rim around the aperture (synapomorphy for Hyalospheniidae). We thus synonymise Hyalospheniidae and Nebelidae. Hyalospheniidae takes precedence and now includes Hyalosphenia, Quadrulella (previously in the Lesquereusiidae) and all Nebelidae with the exception of Argynnia and Physochila. Leptochlamys is Arcellinida incertae sedis. We describe a new genus Padaungiella Lara et Todorov and a new species Nebela meisterfeldi n. sp. Heger et Mitchell and revise the taxonomic position (and rank) of several taxa. These results show that the traditional morphology-based taxonomy underestimates the diversity within the Nebela group, and that phylogenetic relationships are best inferred from shell shape rather than from the material used to build the shell.


Molecular Phylogenetics and Evolution | 2010

Molecular phylogeny of euglyphid testate amoebae (Cercozoa: Euglyphida) suggests transitions between marine supralittoral and freshwater/terrestrial environments are infrequent.

Thierry J. Heger; Edward A. D. Mitchell; Milcho Todorov; Vassil Golemansky; Enrique Lara; Brian S. Leander; Jan Pawlowski

Marine and freshwater ecosystems are fundamentally different regarding many biotic and abiotic factors. The physiological adaptations required for an organism to pass the salinity barrier are considerable. Many eukaryotic lineages are restricted to either freshwater or marine environments. Molecular phylogenetic analyses generally demonstrate that freshwater species and marine species segregate into different sub-clades, indicating that transitions between these two environments occur only rarely in the course of evolution. It is, however, unclear if the transitions between freshwater and environments characterized by highly variable salinities, such as the marine supralittoral zone, are also infrequent. Here, we use testate amoebae within the Euglyphida to assess the phylogenetic interrelationships between marine supralittoral and freshwater taxa. Euglyphid testate amoebae are mainly present in freshwater habitats but also occur in marine supralittoral environments. Accordingly, we generated and analyzed partial SSU rRNA gene sequences from 49 new marine/supralittoral and freshwater Cyphoderiidae sequences, 20 sequences of the Paulinellidae, Trinematidae, Assulinidae, and Euglyphidae families as well as 21 GenBank sequences of unidentified taxa derived from environmental PCR surveys. Both the molecular and morphological data suggest that the diversity of Cyphoderiidae is strongly underestimated. The results of our phylogenetic analyses demonstrated that marine supralittoral and freshwater euglyphid testate amoeba species are segregated into distinct sub-clades, suggesting that transitions between these two habitats occurred only infrequently.


Molecular Ecology | 2013

Holarctic phylogeography of the testate amoeba Hyalosphenia papilio (Amoebozoa: Arcellinida) reveals extensive genetic diversity explained more by environment than dispersal limitation.

Thierry J. Heger; Edward A. D. Mitchell; Brian S. Leander

Although free‐living protists play essential roles in aquatic and soil ecology, little is known about their diversity and phylogeography, especially in terrestrial ecosystems. We used mitochondrial cytochrome c oxidase subunit 1 (COI) gene sequences to investigate the genetic diversity and phylogeography of the testate amoeba morphospecies Hyalosphenia papilio in 42 Sphagnum (moss)‐dominated peatlands in North America, Europe and Asia. Based on ≥1% sequence divergence threshold, our results from single‐cell PCRs of 301 individuals revealed 12 different genetic lineages and both the general mixed Yule‐coalescent (GMYC) model and the automatic barcode gap discovery (ABGD) methods largely support the hypothesis that these 12 H. papilio lineages correspond to evolutionary independent units (i.e. cryptic species). Our data also showed a high degree of genetic heterogeneity within different geographical regions. Furthermore, we used variation partitioning based on partial redundancy analyses (pRDA) to evaluate the contributions of climate and dispersal limitations on the distribution patterns of the different genetic lineages. The largest fraction of the variation in genetic lineage distribution was attributed to purely climatic factors (21%), followed by the joint effect of spatial and bioclimatic factors (13%), and a purely spatial effect (3%). Therefore, these data suggest that the distribution patterns of H. papilio genetic lineages in the Northern Hemisphere are more influenced by climatic conditions than by dispersal limitations.


European Journal of Protistology | 2013

Using DNA-barcoding for sorting out protist species complexes: A case study of the Nebela tincta–collaris–bohemica group (Amoebozoa; Arcellinida, Hyalospheniidae)

Anush Kosakyan; Fatma Gomaa; Edward A. D. Mitchell; Thierry J. Heger; Enrique Lara

Species identification by means of morphology is often problematic in protists. Nebela tincta-collaris-bohemica (Arcellinida) is a species complex of small to medium-sized (ca.100 μm) testate amoebae common in peat bogs and forest soils. The taxonomic validity of characters used to define species within this group is debated and causes confusion in studies of biogeography, and applications in palaeoecology. We examined the relationship between morphological and genetic diversity within this species complex by combined analyses of light microscopy imaging and Cytochrome Oxidase Subunit 1(COI) sequences obtained from the same individual amoeba cells. Our goals were (1) to clarify the taxonomy and the phylogenetic relationships within this group, and (2) to evaluate if individual genotypes corresponded to specific morphotypes and the extent of phenotypic plasticity. We show here that small variations in test morphology that have been often overlooked by traditional taxonomy correspond to distinct haplotypes. We therefore revise the taxonomy of the group. We redefine Nebela tincta (Leidy) Kosakyan et Lara and N. collaris (Ehrenberg 1848) Kosakyan et Gomaa, change N. tincta var. rotunda Penard to N. rotunda (Penard 1890), describe three new species: N. guttata n. sp. Kosakyan et Lara, N. pechorensis n. sp. Kosakyan et Mitchell, and N. aliciae n. sp. Mitchell et Lara.


Protist | 2012

SSU rRNA phylogeny of Arcellinida (Amoebozoa) reveals that the largest Arcellinid genus, Difflugia Leclerc 1815, is not monophyletic.

Fatma Gomaa; Milcho Todorov; Thierry J. Heger; Edward A. D. Mitchell; Enrique Lara

The systematics of lobose testate amoebae (Arcellinida), a diverse group of shelled free-living unicellular eukaryotes, is still mostly based on morphological criteria such as shell shape and composition. Few molecular phylogenetic studies have been performed on these organisms to date, and their phylogeny suffers from typical under-sampling artefacts, resulting in a still mostly unresolved tree. In order to clarify the phylogenetic relationships among arcellinid testate amoebae at the inter-generic and inter-specific level, and to evaluate the validity of the criteria used for taxonomy, we amplified and sequenced the SSU rRNA gene of nine taxa - Difflugia bacillariarum, D. hiraethogii, D. acuminata, D. lanceolata, D. achlora, Bullinularia gracilis, Netzelia oviformis, Physochila griseola and Cryptodifflugia oviformis. Our results, combined with existing data demonstrate the following: 1) Most arcellinids are divided into two major clades, 2) the genus Difflugia is not monophyletic, and the genera Netzelia and Arcella are closely related, and 3) Cryptodifflugia branches at the base of the Arcellinida clade. These results contradict the traditional taxonomy based on shell composition, and emphasize the importance of general shell shape in the taxonomy of arcellinid testate amoebae.


Journal of Eukaryotic Microbiology | 2009

Morphology, Biometry, and Taxonomy of Freshwater and Marine Interstitial Cyphoderia (Cercozoa: Euglyphida)

Milcho Todorov; Vassil Golemansky; Edward A. D. Mitchell; Thierry J. Heger

ABSTRACT. Good taxonomy is essential for ecological, biogeographical, and evolutionary studies of any group of organisms. Therefore, we performed detailed light‐ and scanning electron microscopy investigations on the shell ultrastructure and biometric analyses of the morphometric variability of five freshwater and marine interstitial testate amoebae of the genus Cyphoderia (C. trochus var. amphoralis, C. ampulla, C. margaritacea var. major, C. compressa, and C. littoralis), isolated from different populations in Bulgaria and Switzerland. Our aims were (1) to clarify the morphological characteristics of these taxa, and (2) to compare the morphology of a given taxon (C. ampulla) among different locations in Bulgaria and Switzerland as a first step towards an assessment of the geographical variation within a supposedly cosmopolitan taxon. Four of the studied taxa are characterized by a well‐expressed main‐size class and by a small size range of all the characters and can be defined as size‐monomorphic species. Based on these results, the following systematic changes are proposed: C. major ( Penard, 1891 ) n. comb. (Syn.: C. margaritacea var. major ( Penard, 1891 ) and C. amphoralis ( Wailes & Penard, 1911 ) n. comb. (Syn.: C. trochus var. amphoralis ( Wailes & Penard, 1911 )). However, we also show significant morphological variability between the Swiss and Bulgarian populations of C. ampulla, suggesting the possible existence of more than one taxon within this species. Further studies are required to assess (1) if these two morphologically different taxa represent individual species, (2) if so, if more species exist, and if this diversity is due to limited distribution ranges (endemism) or if several closely related taxa occur together in different geographical areas.


Journal of Eukaryotic Microbiology | 2014

A resurgence in field research is essential to better understand the diversity, ecology, and evolution of microbial eukaryotes.

Thierry J. Heger; Virginia P. Edgcomb; Eunsoo Kim; Julius Lukeš; Brian S. Leander; Naoji Yubuki

The discovery and characterization of protist communities from diverse environments are crucial for understanding the overall evolutionary history of life on earth. However, major questions about the diversity, ecology, and evolutionary history of protists remain unanswered, notably because data obtained from natural protist communities, especially of heterotrophic species, remain limited. In this review, we discuss the challenges associated with “field protistology”, defined here as the exploration, characterization, and interpretation of microbial eukaryotic diversity within the context of natural environments or field experiments, and provide suggestions to help fill this important gap in knowledge. We also argue that increased efforts in field studies that combine molecular and microscopical methods offer the most promising path toward (1) the discovery of new lineages that expand the tree of eukaryotes; (2) the recognition of novel evolutionary patterns and processes; (3) the untangling of ecological interactions and functions, and their roles in larger ecosystem processes; and (4) the evaluation of protist adaptations to a changing climate.


PLOS ONE | 2014

Old Lineages in a New Ecosystem: Diversification of Arcellinid Amoebae (Amoebozoa) and Peatland Mosses

Omar Fiz-Palacios; Brian S. Leander; Thierry J. Heger

Arcellinid testate amoebae (Amoebozoa) form a group of free-living microbial eukaryotes with one of the oldest fossil records known, yet several aspects of their evolutionary history remain poorly understood. Arcellinids occur in a range of terrestrial, freshwater and even brackish habitats; however, many arcellinid morphospecies such as Hyalosphenia papilio are particularly abundant in Sphagnum-dominated peatlands, a relatively new ecosystem that appeared during the diversification of Sphagnum species in the Miocene (5–20 Myr ago). Here, we reconstruct divergence times in arcellinid testate amoebae after selecting several fossils for clock calibrations and then infer whether or not arcellinids followed a pattern of diversification that parallels the pattern described for Sphagnum. We found that the diversification of core arcellinids occurred during the Phanerozoic, which is congruent with most arcellinid fossils but not with the oldest known amoebozoan fossil (i.e. at ca. 662 or ca. 750 Myr). Overall, Sphagnum and the Hyalospheniidae exhibit different patterns of diversification. However, an extensive molecular phylogenetic analysis of distinct clades within H. papilio species complex demonstrated a correlation between the recent diversification of H. papilio, the recent diversification of Sphagnum mosses, and the establishment of peatlands.


Environmental Microbiology | 2018

Identifying protist consumers of photosynthetic picoeukaryotes in the surface ocean using stable isotope probing

William D. Orsi; Susanne Wilken; Javier Campo; Thierry J. Heger; Erick R. James; Thomas A. Richards; Patrick J. Keeling; Alexandra Z. Worden; Alyson E. Santoro

Photosynthetic picoeukaryotes contribute a significant fraction of primary production in the upper ocean. Micromonas pusilla is an ecologically relevant photosynthetic picoeukaryote, abundantly and widely distributed in marine waters. Grazing by protists may control the abundance of picoeukaryotes such as M. pusilla, but the diversity of the responsible grazers is poorly understood. To identify protists consuming photosynthetic picoeukaryotes in a productive North Pacific Ocean region, we amended seawater with living 15 N, 13 C-labelled M. pusilla cells in a 24-h replicated bottle experiment. DNA stable isotope probing, combined with high-throughput sequencing of V4 hypervariable regions from 18S rRNA gene amplicons (Tag-SIP), identified 19 operational taxonomic units (OTUs) of microbial eukaryotes that consumed M. pusilla. These OTUs were distantly related to cultured taxa within the dinoflagellates, ciliates, stramenopiles (MAST-1C and MAST-3 clades) and Telonema flagellates, thus, far known only from their environmental 18S rRNA gene sequences. Our discovery of eukaryotic prey consumption by MAST cells confirms that their trophic role in marine microbial food webs includes grazing upon picoeukaryotes. Our study provides new experimental evidence directly linking the genetic identity of diverse uncultivated microbial eukaryotes to the consumption of picoeukaryotic phytoplankton in the upper ocean.

Collaboration


Dive into the Thierry J. Heger's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Enrique Lara

University of Neuchâtel

View shared research outputs
Top Co-Authors

Avatar

Brian S. Leander

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Milcho Todorov

Bulgarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anush Kosakyan

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vassil Golemansky

Bulgarian Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge