Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thierry Mora is active.

Publication


Featured researches published by Thierry Mora.


Journal of Statistical Physics | 2011

Are Biological Systems Poised at Criticality

Thierry Mora; William Bialek

Many of life’s most fascinating phenomena emerge from interactions among many elements—many amino acids determine the structure of a single protein, many genes determine the fate of a cell, many neurons are involved in shaping our thoughts and memories. Physicists have long hoped that these collective behaviors could be described using the ideas and methods of statistical mechanics. In the past few years, new, larger scale experiments have made it possible to construct statistical mechanics models of biological systems directly from real data. We review the surprising successes of this “inverse” approach, using examples from families of proteins, networks of neurons, and flocks of birds. Remarkably, in all these cases the models that emerge from the data are poised near a very special point in their parameter space—a critical point. This suggests there may be some deeper theoretical principle behind the behavior of these diverse systems.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Statistical mechanics for natural flocks of birds

William Bialek; Andrea Cavagna; Irene Giardina; Thierry Mora; Edmondo Silvestri; Massimiliano Viale; Aleksandra M. Walczak

Flocking is a typical example of emergent collective behavior, where interactions between individuals produce collective patterns on the large scale. Here we show how a quantitative microscopic theory for directional ordering in a flock can be derived directly from field data. We construct the minimally structured (maximum entropy) model consistent with experimental correlations in large flocks of starlings. The maximum entropy model shows that local, pairwise interactions between birds are sufficient to correctly predict the propagation of order throughout entire flocks of starlings, with no free parameters. We also find that the number of interacting neighbors is independent of flock density, confirming that interactions are ruled by topological rather than metric distance. Finally, by comparing flocks of different sizes, the model correctly accounts for the observed scale invariance of long-range correlations among the fluctuations in flight direction.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Maximum entropy models for antibody diversity

Thierry Mora; Aleksandra M. Walczak; William Bialek; Curtis G. Callan

Recognition of pathogens relies on families of proteins showing great diversity. Here we construct maximum entropy models of the sequence repertoire, building on recent experiments that provide a nearly exhaustive sampling of the IgM sequences in zebrafish. These models are based solely on pairwise correlations between residue positions but correctly capture the higher order statistical properties of the repertoire. By exploiting the interpretation of these models as statistical physics problems, we make several predictions for the collective properties of the sequence ensemble: The distribution of sequences obeys Zipf’s law, the repertoire decomposes into several clusters, and there is a massive restriction of diversity because of the correlations. These predictions are completely inconsistent with models in which amino acid substitutions are made independently at each site and are in good agreement with the data. Our results suggest that antibody diversity is not limited by the sequences encoded in the genome and may reflect rapid adaptation to antigenic challenges. This approach should be applicable to the study of the global properties of other protein families.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Statistical inference of the generation probability of T-cell receptors from sequence repertoires

Anand Murugan; Thierry Mora; Aleksandra M. Walczak; Curtis G. Callan

Stochastic rearrangement of germline V-, D-, and J-genes to create variable coding sequence for certain cell surface receptors is at the origin of immune system diversity. This process, known as “VDJ recombination”, is implemented via a series of stochastic molecular events involving gene choices and random nucleotide insertions between, and deletions from, genes. We use large sequence repertoires of the variable CDR3 region of human CD4+ T-cell receptor beta chains to infer the statistical properties of these basic biochemical events. Because any given CDR3 sequence can be produced in multiple ways, the probability distribution of hidden recombination events cannot be inferred directly from the observed sequences; we therefore develop a maximum likelihood inference method to achieve this end. To separate the properties of the molecular rearrangement mechanism from the effects of selection, we focus on nonproductive CDR3 sequences in T-cell DNA. We infer the joint distribution of the various generative events that occur when a new T-cell receptor gene is created. We find a rich picture of correlation (and absence thereof), providing insight into the molecular mechanisms involved. The generative event statistics are consistent between individuals, suggesting a universal biochemical process. Our probabilistic model predicts the generation probability of any specific CDR3 sequence by the primitive recombination process, allowing us to quantify the potential diversity of the T-cell repertoire and to understand why some sequences are shared between individuals. We argue that the use of formal statistical inference methods, of the kind presented in this paper, will be essential for quantitative understanding of the generation and evolution of diversity in the adaptive immune system.


Physical Review Letters | 2005

Clustering of solutions in the random satisfiability problem.

Marc Mézard; Thierry Mora; Riccardo Zecchina

Using elementary rigorous methods we prove the existence of a clustered phase in the random K-SAT problem, for K > or = 8. In this phase the solutions are grouped into clusters which are far away from each other. The results are in agreement with previous predictions of the cavity method and give a rigorous confirmation to one of its main building blocks. It can be generalized to other systems of both physical and computational interest.


European Physical Journal E | 2006

Buckling of swelling gels

Thierry Mora; Arezki Boudaoud

Abstract.The patterns arising from the differential swelling of gels are investigated experimentally and theoretically as a model for the differential growth of living tissues. Two geometries are considered: a thin strip of soft gel clamped to a stiff gel, and a thin corona of soft gel clamped to a disk of stiff gel. When the structure is immersed in water, the soft gel swells and bends out of plane leading to a wavy periodic pattern whose wavelength is measured. The linear stability of the flat state is studied in the framework of linear elasticity using the equations for thin plates. The flat state is shown to become unstable to oscillations above a critical swelling rate and the computed wavelengths are in quantitative agreement with the experiment.


Journal of Physiology-paris | 2009

Constraint satisfaction problems and neural networks: A statistical physics perspective

Marc Mézard; Thierry Mora

A new field of research is rapidly expanding at the crossroad between statistical physics, information theory and combinatorial optimization. In particular, the use of cutting edge statistical physics concepts and methods allow one to solve very large constraint satisfaction problems like random satisfiability, coloring, or error correction. Several aspects of these developments should be relevant for the understanding of functional complexity in neural networks. On the one hand the message passing procedures which are used in these new algorithms are based on local exchange of information, and succeed in solving some of the hardest computational problems. On the other hand some crucial inference problems in neurobiology, like those generated in multi-electrode recordings, naturally translate into hard constraint satisfaction problems. This paper gives a non-technical introduction to this field, emphasizing the main ideas at work in message passing strategies and their possible relevance to neural networks modelling. It also introduces a new message passing algorithm for inferring interactions between variables from correlation data, which could be useful in the analysis of multi-electrode recording data.


Frontiers in Immunology | 2013

The past, present, and future of immune repertoire biology - the rise of next-generation repertoire analysis

Adrien Six; Maria Encarnita Mariotti-Ferrandiz; Wahiba Chaara; Susana Magadan; Hang-Phuong Pham; Marie-Paule Lefranc; Thierry Mora; Véronique Thomas-Vaslin; Aleksandra M. Walczak; Pierre Boudinot

T and B cell repertoires are collections of lymphocytes, each characterized by its antigen-specific receptor. We review here classical technologies and analysis strategies developed to assess immunoglobulin (IG) and T cell receptor (TR) repertoire diversity, and describe recent advances in the field. First, we describe the broad range of available methodological tools developed in the past decades, each of which answering different questions and showing complementarity for progressive identification of the level of repertoire alterations: global overview of the diversity by flow cytometry, IG repertoire descriptions at the protein level for the identification of IG reactivities, IG/TR CDR3 spectratyping strategies, and related molecular quantification or dynamics of T/B cell differentiation. Additionally, we introduce the recent technological advances in molecular biology tools allowing deeper analysis of IG/TR diversity by next-generation sequencing (NGS), offering systematic and comprehensive sequencing of IG/TR transcripts in a short amount of time. NGS provides several angles of analysis such as clonotype frequency, CDR3 diversity, CDR3 sequence analysis, V allele identification with a quantitative dimension, therefore requiring high-throughput analysis tools development. In this line, we discuss the recent efforts made for nomenclature standardization and ontology development. We then present the variety of available statistical analysis and modeling approaches developed with regards to the various levels of diversity analysis, and reveal the increasing sophistication of those modeling approaches. To conclude, we provide some examples of recent mathematical modeling strategies and perspectives that illustrate the active rise of a “next-generation” of repertoire analysis.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Social interactions dominate speed control in poising natural flocks near criticality.

William Bialek; Andrea Cavagna; Irene Giardina; Thierry Mora; Oliver Pohl; Edmondo Silvestri; Massimiliano Viale; Aleksandra M. Walczak

Significance The coherent flight of bird flocks is one of nature’s most impressive aerial displays. Beyond the fact that thousands of birds fly, on average, with the same velocity, quantitative observations show that small deviations of individual birds from this average are correlated across the entire flock. By learning minimally structured models from field data, we show that these long-ranged correlations are consistent with local interactions among neighboring birds, but only because the parameters of the flock are tuned to special values, mathematically equivalent to a critical point in statistical mechanics. Being in this critical regime allows information to propagate almost without loss throughout the flock, while keeping the variance of individual velocities small. Flocks of birds exhibit a remarkable degree of coordination and collective response. It is not just that thousands of individuals fly, on average, in the same direction and at the same speed, but that even the fluctuations around the mean velocity are correlated over long distances. Quantitative measurements on flocks of starlings, in particular, show that these fluctuations are scale-free, with effective correlation lengths proportional to the linear size of the flock. Here we construct models for the joint distribution of velocities in the flock that reproduce the observed local correlations between individuals and their neighbors, as well as the variance of flight speeds across individuals, but otherwise have as little structure as possible. These minimally structured or maximum entropy models provide quantitative, parameter-free predictions for the spread of correlations throughout the flock, and these are in excellent agreement with the data. These models are mathematically equivalent to statistical physics models for ordering in magnets, and the correct prediction of scale-free correlations arises because the parameters—completely determined by the data—are in the critical regime. In biological terms, criticality allows the flock to achieve maximal correlation across long distances with limited speed fluctuations.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Cell–cell contacts confine public goods diffusion inside Pseudomonas aeruginosa clonal microcolonies

Thomas Julou; Thierry Mora; Laurent Guillon; Vincent Croquette; Isabelle J. Schalk; David Bensimon; Nicolas Desprat

The maintenance of cooperation in populations where public goods are equally accessible to all but inflict a fitness cost on individual producers is a long-standing puzzle of evolutionary biology. An example of such a scenario is the secretion of siderophores by bacteria into their environment to fetch soluble iron. In a planktonic culture, these molecules diffuse rapidly, such that the same concentration is experienced by all bacteria. However, on solid substrates, bacteria form dense and packed colonies that may alter the diffusion dynamics through cell–cell contact interactions. In Pseudomonas aeruginosa microcolonies growing on solid substrate, we found that the concentration of pyoverdine, a secreted iron chelator, is heterogeneous, with a maximum at the center of the colony. We quantitatively explain the formation of this gradient by local exchange between contacting cells rather than by global diffusion of pyoverdine. In addition, we show that this local trafficking modulates the growth rate of individual cells. Taken together, these data provide a physical basis that explains the stability of public goods production in packed colonies.

Collaboration


Dive into the Thierry Mora's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuval Elhanati

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea Cavagna

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Irene Giardina

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Gašper Tkačik

Institute of Science and Technology Austria

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marc Mézard

University of Paris-Sud

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge