Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thierry Pedron is active.

Publication


Featured researches published by Thierry Pedron.


The EMBO Journal | 2002

Conversion of PtdIns(4,5)P2 into PtdIns(5)P by the S.flexneri effector IpgD reorganizes host cell morphology

Kirsten Niebuhr; Sylvie Giuriato; Thierry Pedron; Dana J. Philpott; Frédérique Gaits; Julia Sable; Michael P. Sheetz; Claude Parsot; Philippe J. Sansonetti; Bernard Payrastre

Phosphoinositides play a central role in the control of several cellular events including actin cytoskeleton organization. Here we show that, upon infection of epithelial cells with the Gram‐negative pathogen Shigella flexneri, the virulence factor IpgD is translocated directly into eukaryotic cells and acts as a potent inositol 4‐phosphatase that specifically dephosphorylates phosphatidylinositol 4,5‐bisphosphate [PtdIns(4,5)P2] into phosphatidylinositol 5‐monophosphate [PtdIns(5)P] that then accumulates. Transfection experiments indicate that the transformation of PtdIns(4,5)P2 into PtdIns(5)P by IpgD is responsible for dramatic morphological changes of the host cell, leading to a decrease in membrane tether force associated with membrane blebbing and actin filament remodelling. These data provide the molecular basis for a new mechanism employed by a pathogenic bacterium to promote membrane ruffling at the entry site.


Journal of Cell Science | 2003

Lipopolysaccharides from Legionella and Rhizobium stimulate mouse bone marrow granulocytes via Toll-like receptor 2.

Robert Girard; Thierry Pedron; Satoshi Uematsu; Viviane Balloy; Shizuo Akira; Richard Chaby

Lipopolysaccharide (LPS) derived from enterobacteria elicit in several cell types cellular responses that are restricted in the use of Toll-like receptor 4 (TLR4) as the principal signal-transducing molecule. A tendency to consider enterobacterial LPS as a prototypic LPS led some authors to present this mechanism as a paradigm accounting for all LPSs in all cell types. However, the structural diversity of LPS does not allow such a general statement. By using LPSs from bacteria that do not belong to the Enterobacteriaceae, we show that in bone marrow cells (BMCs) the LPS of Rhizobium species Sin-1 and of three strains of Legionella pneumophila require TLR2 rather than TLR4 to elicit the expression of CD14. In addition, exposure of BMCs from TLR4-deficient (C3H/HeJ) mice to the lipid A fragment of the Bordetella pertussis LPS inhibits their activation by the Legionella lipid A. The data show selective action of different LPSs via different TLRs, and suggest that TLR2 can interact with many lipid A structures, leading to either agonistic or specific antagonistic effects.


Immunity | 2003

Anti-inflammatory role for intracellular dimeric immunoglobulin a by neutralization of lipopolysaccharide in epithelial cells.

M. Isabel Fernandez; Thierry Pedron; Régis Tournebize; Jean-Christophe Olivo-Marin; Philippe J. Sansonetti; Armelle Phalipon

Intestinal epithelial cells (IEC) play a central role in innate and acquired mucosal immunity. They ensure early signaling to trigger an inflammatory response against pathogens. Moreover, IEC mediate transcytosis of dimeric IgA (dIgA), through the polymeric-immunoglobulin receptor (pIgR), to provide secretory IgA, the major protective Ig in mucosal secretions. Using an in vitro model of polarized IEC, we describe an additional anti-inflammatory mechanism of dIgA-mediated protection against intracellular bacterial components involved in the proinflammatory activation of IEC. Specific dIgA colocalizes to lipopolysaccharide (LPS) in the apical recycling endosome compartment, preventing LPS-induced NF-kappaB translocation and subsequent proinflammatory response. Thus, intracellular neutralization by dIgA limits the acute local inflammation induced by proinflammatory pathogen-associated molecular patterns such as LPS.


Journal of Experimental Medicine | 2008

Virulent Shigella flexneri subverts the host innate immune response through manipulation of antimicrobial peptide gene expression

Brice Sperandio; Béatrice Regnault; Jianhua Guo; Zhi Zhang; Samuel L. Stanley; Philippe J. Sansonetti; Thierry Pedron

Antimicrobial factors are efficient defense components of the innate immunity, playing a crucial role in the intestinal homeostasis and protection against pathogens. In this study, we report that upon infection of polarized human intestinal cells in vitro, virulent Shigella flexneri suppress transcription of several genes encoding antimicrobial cationic peptides, particularly the human β-defensin hBD-3, which we show to be especially active against S. flexneri. This is an example of targeted survival strategy. We also identify the MxiE bacterial regulator, which controls a regulon encompassing a set of virulence plasmid-encoded effectors injected into host cells and regulating innate signaling, as being responsible for this dedicated regulatory process. In vivo, in a model of human intestinal xenotransplant, we confirm at the transcriptional and translational level, the presence of a dedicated MxiE-dependent system allowing S. flexneri to suppress expression of antimicrobial cationic peptides and promoting its deeper progression toward intestinal crypts. We demonstrate that this system is also able to down-regulate additional innate immunity genes, such as the chemokine CCL20 gene, leading to compromised recruitment of dendritic cells to the lamina propria of infected tissues. Thus, S. flexneri has developed a dedicated strategy to weaken the innate immunity to manage its survival and colonization ability in the intestine.


Mbio | 2012

A Crypt-Specific Core Microbiota Resides in the Mouse Colon

Thierry Pedron; Céline Mulet; Catherine Dauga; Lionel Frangeul; Christian Chervaux; Gianfranco Grompone; Philippe J. Sansonetti

ABSTRACT In an attempt to explore the microbial content of functionally critical niches of the mouse gastrointestinal tract, we targeted molecular microbial diagnostics of the crypts that contain the intestinal stem cells, which account for epithelial regeneration. As current evidence indicates, the gut microbiota affects epithelial regeneration; bacteria that are likely to primarily participate in this essential step of the gut, microbiota cross talk, have been identified. We show in this article that only the cecal and colonic crypts harbor resident microbiota in the mouse and that regardless of the line and breeding origin of these mice, this bacterial population is unexpectedly dominated by aerobic genera. Interestingly, this microbiota resembles the restricted microbiota found in the midgut of invertebrates; thus, the presence of our so-called “crypt-specific core microbiota” (CSCM) in the mouse colon potentially reflects a coevolutionary process under selective conditions that can now be addressed. We suggest that CSCM could play both a protective and a homeostatic role within the colon. This article is setting the bases for such studies, particularly by providing a bona fide—and essentially cultivable—crypt microbiota of reference. IMPORTANCE Metagenomic typing of the whole-gut luminal microbiome was recently provided, revealing great opportunities for physiological and physiopathological analysis of the host-microbiota interface. On this basis, it appears increasingly important to analyze which niches of the gut exposed to a particular microbiota are of major functional importance, specifically focusing on the crypt, which accounts for permanent epithelial renewal, and to analyze how this microbiota compares to its luminal counterpart in composition and quantity. Crypt-specific core microbiotas may show themselves as important elements regarding crypt protection and homeostasis of its functions. Metagenomic typing of the whole-gut luminal microbiome was recently provided, revealing great opportunities for physiological and physiopathological analysis of the host-microbiota interface. On this basis, it appears increasingly important to analyze which niches of the gut exposed to a particular microbiota are of major functional importance, specifically focusing on the crypt, which accounts for permanent epithelial renewal, and to analyze how this microbiota compares to its luminal counterpart in composition and quantity. Crypt-specific core microbiotas may show themselves as important elements regarding crypt protection and homeostasis of its functions.


Journal of Biological Chemistry | 2003

The Invasive Phenotype of Shigella flexneri Directs a Distinct Gene Expression Pattern in the Human Intestinal Epithelial Cell Line Caco-2

Thierry Pedron; Christelle Thibault; Philippe J. Sansonetti

Invasion of the human colonic epithelium by Shigella flexneri causes inflammation that disrupts the intestinal barrier. Invaded intestinal epithelial cells are the major source of mediators recruiting the inflammatory infiltrate. To better characterize the global response of intestinal epithelial cells to Shigella invasion, Caco-2 cells were infected by an invasive isolate of S. flexneri 5a, and their transcriptome was analyzed by Affymetrix (Santa Clara, CA) microarrays (12,000 genes) and compared with these elicited by a non-invasive Shigella mutant and tumor necrosis factor (TNF)-α. The invasive and non-invasive strains enhanced transcription of a common pattern of 240 genes, among which genes encoding isoforms of cytochrome P-450 were induced. These genes were not induced by TNF-α. Conversely, both the invasive strain and TNF-α induced a common set of 18 genes, mainly encoding proinflammatory molecules. They also induced specific sets of genes. The transcriptome induced by the invasive strain was characterized by the induction of early genes (i.e. expressed within the first 45 min of invasion) and late genes (i.e. after 60 min of invasion) whose pattern was strongly biased toward stimulation of granulopoiesis, chemoattraction, activation, and adherence of polymorphonuclear leukocytes. When compared with a non-invasive Shigella and TNF-α, invasive Shigella induced a narrow transcriptome that seems to program infected epithelial cells to recruit a mucosal polymorphonuclear leukocyte to infiltrate. Dramatic increase in IL-8 gene transcription points to this chemokine as the major molecule orchestrating mucosal inflammation in shigellosis.


Infection and Immunity | 2003

Interaction of Pulmonary Surfactant Protein C with CD14 and Lipopolysaccharide

Luis A. Augusto; Jan Johansson; Thierry Pedron; Robert Girard; Richard Chaby

ABSTRACT In addition to their effects on alveolar surface tension, some components of lung surfactant also have immunological functions. We found recently that the hydrophobic lung surfactant protein SP-C specifically binds to the lipid A region of lipopolysaccharide (LPS). In this study, we show that SP-C also interacts with CD14. Four observations showed cross talk between the three molecules SP-C, LPS, and CD14. (i) Like LBP, SP-C allows the binding of a fluorescent LPS to cells expressing CD14 (the other surfactant components were ineffective). (ii) Recombinant radiolabeled CD14 and SP-C (or a synthetic analog of SP-C) interact in a dose-dependent manner. (iii) LPS blocks the binding of radiolabeled CD14 to SP-C-coated wells. (iv) SP-C enhances the binding of radiolabeled CD14 to LPS-coated wells. These results, obtained with native murine SP-C and with three synthetic analogs, suggest that LPS and CD14 interact with the same region of SP-C and that binding of SP-C modifies the conformation of CD14 or the accessibility of its LPS-binding site, allowing it to bind LPS. This ability of SP-C to interact with the pattern recognition molecule CD14 extends the possible immunological targets of SP-C to a large panel of microorganisms that can enter the airways.


PLOS ONE | 2013

Epithelial Cell Proliferation Arrest Induced by Lactate and Acetate from Lactobacillus casei and Bifidobacterium breve

Takahiro Matsuki; Thierry Pedron; Béatrice Regnault; Céline Mulet; Taeko Hara; Philippe J. Sansonetti

In an attempt to identify and characterize how symbiotic bacteria of the gut microbiota affect the molecular and cellular mechanisms of epithelial homeostasis, intestinal epithelial cells were co-cultured with either Lactobacillus or Bifidobacterium as bona fide symbionts to examine potential gene modulations. In addition to genes involved in the innate immune response, genes encoding check-point molecules controlling the cell cycle were among the most modulated in the course of these interactions. In the m-ICcl2 murine cell line, genes encoding cyclin E1 and cyclin D1 were strongly down regulated by L. casei and B. breve respectively. Cell proliferation arrest was accordingly confirmed. Short chain fatty acids (SCFA) were the effectors of this modulation, alone or in conjunction with the acidic pH they generated. These results demonstrate that the production of SCFAs, a characteristic of these symbiotic microorganisms, is potentially an essential regulatory effector of epithelial proliferation in the gut.


PLOS ONE | 2009

Characterisation of Early Mucosal and Neuronal Lesions Following Shigella flexneri Infection in Human Colon

Emmanuel Coron; Mathurin Flamant; Philippe Aubert; Thilo Wedel; Thierry Pedron; Eric Letessier; Jean Paul Galmiche; Philippe J. Sansonetti; Michel Neunlist

Background Shigella, an enteroinvasive bacteria induces a major inflammatory response responsible for acute rectocolitis in humans. However, early effect of Shigella flexneri (S. flexneri) infection upon the human mucosa and its microenvironement, in particular the enteric nervous system, remains currently unknown. Therefore, in this study, we sought to characterize ex vivo the early events of shigellosis in a model of human colonic explants. In particular, we aimed at identifying factors produced by S. flexneri and responsible for the lesions of the barrier. We also aimed at determining the putative lesions of the enteric nervous system induced by S. flexneri. Methodology/Principal Findings We first showed that, following 3 h of infection, the invasive but not the non-invasive strain of S. flexneri induced significant desquamation of the intestinal epithelial barrier and a reduction of epithelial height. These changes were significantly reduced following infection with SepA deficient S. flexneri strains. Secondly, S. flexneri induced rapid neuronal morphological alterations suggestive of cell death in enteric submucosal neurones. These alterations were associated with a significant increase in the proportion of vasoactive intestinal peptide (VIP) immunoreactive (IR) neurons but not in total VIP levels. The NMDA receptor antagonist MK-801 blocked neuronal morphological changes induced by S. flexneri, but not the increase in the proportion of VIP-IR. Conclusions/Significance This human explant model can be used to gain better insight into the early pathogenic events following S. flexneri infection and the mechanisms involved.


Proceedings of the National Academy of Sciences of the United States of America | 2016

High-fat diet modifies the PPAR-γ pathway leading to disruption of microbial and physiological ecosystem in murine small intestine

Julie Tomas; Céline Mulet; Azadeh Saffarian; Jean-Baptiste Cavin; Robert Ducroc; Béatrice Regnault; Chek Kun Tan; Kalina Duszka; Rémy Burcelin; Walter Wahli; Philippe J. Sansonetti; Thierry Pedron

Significance Our study aimed at exploring the intersection of high-fat diet, mucosal immune defenses, and microbiota. It remains unclear how diet imbalance toward excessive fat intake leads to secondary pathological effects on host physiology through the microbiota. We show that a short period of consumption of high-fat diet alters the small-intestinal defenses and that the biochemistry of the ileum is drastically modified, leading to physiological changes close to that observed in cystic fibrosis. We identified peroxisome proliferator-activated receptor-γ as major regulator of mucosal defenses upon exposure to fat excess. As a result, our work provides a fundamental understanding of the underlying cause of severe chronic disorders associated with Western diet. Diet is among the most important factors contributing to intestinal homeostasis, and basic functions performed by the small intestine need to be tightly preserved to maintain health. Little is known about the direct impact of high-fat (HF) diet on small-intestinal mucosal defenses and spatial distribution of the microbiota during the early phase of its administration. We observed that only 30 d after HF diet initiation, the intervillous zone of the ileum—which is usually described as free of bacteria—became occupied by a dense microbiota. In addition to affecting its spatial distribution, HF diet also drastically affected microbiota composition with a profile characterized by the expansion of Firmicutes (appearance of Erysipelotrichi), Proteobacteria (Desulfovibrionales) and Verrucomicrobia, and decrease of Bacteroidetes (family S24-7) and Candidatus arthromitus. A decrease in antimicrobial peptide expression was predominantly observed in the ileum where bacterial density appeared highest. In addition, HF diet increased intestinal permeability and decreased cystic fibrosis transmembrane conductance regulator (Cftr) and the Na-K-2Cl cotransporter 1 (Nkcc1) gene and protein expressions, leading to a decrease in ileal secretion of chloride, likely responsible for massive alteration in mucus phenotype. This complex phenotype triggered by HF diet at the interface between the microbiota and the mucosal surface was reversed when the diet was switched back to standard composition or when mice were treated for 1 wk with rosiglitazone, a specific agonist of peroxisome proliferator-activated receptor-γ (PPAR-γ). Moreover, weaker expression of antimicrobial peptide-encoding genes and intervillous bacterial colonization were observed in Ppar-γ–deficient mice, highlighting the major role of lipids in modulation of mucosal immune defenses.

Collaboration


Dive into the Thierry Pedron's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge