Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thierry Pozzo is active.

Publication


Featured researches published by Thierry Pozzo.


Experimental Brain Research | 1990

Head stabilization during various locomotor tasks in humans

Thierry Pozzo; Alain Berthoz; L. Lefort; E. Vitte

SummaryThis experiment, which extends a previous investigation (Pozzo et al. 1990), was undertaken to examine how head position is controlled during natural locomotor tasks in both normal subjects (N) and patients with bilateral vestibular deficits (V). 10 normals and 7 patients were asked to perform 4 locomotor tasks: free walking (W), walking in place (WIP), running in place (R) and hopping (H). Head and body movements were recorded with a video system which allowed a computed 3 dimensional reconstruction of selected points in the sagittal plane. In order to determine the respective contribution of visual and vestibular cues in the control of head angular position, the 2 groups of subjects were tested in the light and in darkness. In darkness, the amplitude and velocity of head rotation decreased for N subjects; these parameters increased for V subjects, especially during R and H. In darkness, compared to the light condition, the mean position of a line placed on the Frankfort plane (about 20–30° below the horizontal semi-circular canal plane) was tilted downward in all conditions of movement, except during H, for N subjects. In contrast, this flexion of the head was not systematic in V subjects: the Frankfort plane could be located above or below earth horizontal. In V subjects, head rotation was not found to be compensatory for head translation and the power spectrum analysis shows that head angular displacements in the sagittal plane contain mainly low frequencies (about 0.3–0.8 Hz). The respective contribution of visual and vestibular cues in the control of the orientation and the stabilization of the head in space is discussed.


Neuroscience | 2006

Improvement and generalization of arm motor performance through motor imagery practice

Rodolphe J. Gentili; Charalambos Papaxanthis; Thierry Pozzo

This study compares the improvement and generalization of arm motor performance after physical or mental training in a motor task requiring a speed-accuracy tradeoff. During the pre- and post-training sessions, 40 subjects pointed with their right arm as accurately and as fast as possible toward targets placed in the frontal plane. Arm movements were performed in two different workspaces called right and left paths. During the training sessions, which included only the right path, subjects were divided into four training groups (n = 10): (i) the physical group, subjects overtly performed the task; (ii) the mental group, subjects imagined themselves performing the task; (iii) the active control group, subjects performed eye movements through the targets, (iv) the passive control group, subjects did not receive any specific training. We recorded movement duration, peak acceleration and electromyographic signals from arm muscles. Our findings showed that after both physical and mental training on the right path (training path), hand movement duration and peak acceleration respectively decreased and increased for this path. However, motor performance improvement was greater after physical compared with mental practice. Interestingly, we also observed a partial learning generalization, namely an enhancement of motor performance for the left path (non-training path). The amount of this generalization was roughly similar for the physical and mental groups. Furthermore, while arm muscle activity progressively increased during the training period for the physical group, the activity of the same muscles for the mental group was unchanged and comparable with that of the rest condition. Control groups did not exhibit any improvement. These findings put forward the idea that mental training facilitates motor learning and allows its partial transfer to nearby workspaces. They further suggest that motor prediction, a common process during both actual and imagined movements, is a fundamental operation for both sensorimotor control and learning.


Brain | 2009

Encoding of human action in Broca's area.

Patrik Fazio; Anna Cantagallo; Laila Craighero; Alessandro D'Ausilio; Alice C. Roy; Thierry Pozzo; Ferdinando Calzolari; Enrico Granieri; Luciano Fadiga

Brocas area has been considered, for over a century, as the brain centre responsible for speech production. Modern neuroimaging and neuropsychological evidence have suggested a wider functional role is played by this area. In addition to the evidence that it is involved in syntactical analysis, mathematical calculation and music processing, it has recently been shown that Brocas area may play some role in language comprehension and, more generally, in understanding actions of other individuals. As shown by functional magnetic resonance imaging, Brocas area is one of the cortical areas activated by hand/mouth action observation and it has been proposed that it may form a crucial node of a human mirror-neuron system. If, on the one hand, neuroimaging studies use a correlational approach which cannot offer a final proof for such claims, available neuropsychological data fail to offer a conclusive demonstration for two main reasons: (i) they use tasks taxing both language and action systems; and (ii) they rarely consider the possibility that Brocas aphasics may also be affected by some form of apraxia. We administered a novel action comprehension test--with almost no linguistic requirements--on selected frontal aphasic patients lacking apraxic symptoms. Patients, as well as matched controls, were shown short movies of human actions or of physical events. Their task consisted of ordering, in a temporal sequence, four pictures taken from each movie and randomly presented on the computer screen. Patients performance showed a specific dissociation in their ability to re-order pictures of human actions (impaired) with respect to physical events (spared). Our study provides a demonstration that frontal aphasics, not affected by apraxia, are specifically impaired in their capability to correctly encode observed human actions.


Experimental Brain Research | 1995

Head and trunk movements in the frontal plane during complex dynamic equilibrium tasks in humans

Thierry Pozzo; Y. Levik; Alain Berthoz

Eight normal human subjects were asked to maintain monopodal equilibrium on a narrow beam (task 1) or bipodal equilibrium on an unstable rocking platform (task 2) for 5 s. Each task was performed under four experimental conditions: (1) in light, (2) in darkness, (3) in light while subject had to hold a full cup of water, and (4) as in 3, but with additional instructions to fix the gaze on the cup. The movements of the trunk and head in the frontal plane were recorded by means of a 50-Hz TV image analyzer that computed the coordinates of small reflective markers glued on the skin of the subjects. On the beam the trunk was inclined on the side of the supporting foot (13 ± 9°), on the rocking platform the mean trunk orientation during the tests was nearly vertical (2 ± 7°). Nevertheless, in both tasks the mean head position was the same and close to vertical: 1.5 ± 4° on the rocking platform and 1.5 ± 5° on the beam. For both tasks and all experimental conditions the head remained stabilized relative to vertical, despite large translations in the frontal plane. Standard deviations of head orientation from its mean value were 2.8 ± 2° for task 1 and 2 ± 1.5° for task 2. The changes of trunk orientation were significantly higher: 6.2+4.8° and 4.5 ± 4°, respectively. The differences in angular stability of head and trunk, measured through the standard deviations of angular displacements, were especially pronounced in trials with large trunk movements. It was concluded that head angular stabilization, providing the central nervous system with necessary visual and vestibular references, is essential for effective dynamic postural control in the frontal plane during complex equilibrium tasks.


Behavioural Brain Research | 2002

Does order and timing in performance of imagined and actual movements affect the motor imagery process? The duration of walking and writing task

Charalambos Papaxanthis; Thierry Pozzo; Xanthi Skoura; Marco Schieppati

The purpose of the present study was to investigate the effects on the duration of imagined movements of changes in timing and order of performance of actual and imagined movement. Two groups of subjects had to actually execute and imagine a walking and a writing task. The first group first executed 10 trials of the actual movements (block A) and then imagined the same movements at different intervals: immediately after actual movements (block I-1) and after 25 min (I-2), 50 min (I-3) and 75 min (I-4) interval. The second group first imagined and then actually executed the tasks. The duration of actual and imagined movements, recorded by means of an electronic stopwatch operated by the subjects, was analysed. The duration of imagined movements was very similar to those of actual movements, for both tasks, regardless of either the interval elapsed from the actual movements (first group) or the order of performance (second group). However, the variability of imagined movement duration was significantly increased compared to variability of the actual movements, for both motor tasks and groups. The findings give evidence of similar cognitive processes underlying both imagination and actual performance of movement.


Experimental Brain Research | 1999

Does the coordination between posture and movement during human whole-body reaching ensure center of mass stabilization?

Paul Stapley; Thierry Pozzo; Guy Cheron; Alexander Grishin

Abstract The whole-body center of mass (CoM) has been classically regarded as the stabilized reference value for human voluntary movements executed upon a fixed base of support. Axial synergies (opposing displacements of head and trunk with hip segments) are believed to minimize antero-posterior (A/P) CoM displacements during forward trunk movements. It is also widely accepted that anticipatory postural adjustments (APAs) create forces of inertia that counteract disturbances arising from the moving segment(s). In the present study, we investigated CoM stabilization by axial synergies and APAs during a whole-body reaching task. Subjects reached towards an object placed on the ground in front of them in their sagittal plane using a strategy of coordinated trunk, knee, and hip flexion. The reaching task imposed constraints on arm-trajectory formation and equilibrium maintenance. To manipulate equilibrium constraints, differing conditions of distance and speed were imposed. The comparison of distance conditions suggested that axial synergies were not entirely devoted to CoM stabilization: backward A/P hip displacements reduced as head and trunk forward A/P displacements increased. Analysis of upper- and lower-body centers of mass in relation to the CoM also showed no strict minimization of A/P CoM displacements. Mechanical analysis of the effects of APAs revealed that, rather than acting to stabilize the CoM, APAs created necessary conditions for forward CoM displacement within the base of support in each condition. The results have implications for the CoM as the primary stabilized reference for posture and movement coordination during whole-body reaching and for the central control of posture and voluntary movement.


PLOS Computational Biology | 2008

The inactivation principle: mathematical solutions minimizing the absolute work and biological implications for the planning of arm movements.

Bastien Berret; Christian Darlot; Frédéric Jean; Thierry Pozzo; Charalambos Papaxanthis; Jean Paul Gauthier

An important question in the literature focusing on motor control is to determine which laws drive biological limb movements. This question has prompted numerous investigations analyzing arm movements in both humans and monkeys. Many theories assume that among all possible movements the one actually performed satisfies an optimality criterion. In the framework of optimal control theory, a first approach is to choose a cost function and test whether the proposed model fits with experimental data. A second approach (generally considered as the more difficult) is to infer the cost function from behavioral data. The cost proposed here includes a term called the absolute work of forces, reflecting the mechanical energy expenditure. Contrary to most investigations studying optimality principles of arm movements, this model has the particularity of using a cost function that is not smooth. First, a mathematical theory related to both direct and inverse optimal control approaches is presented. The first theoretical result is the Inactivation Principle, according to which minimizing a term similar to the absolute work implies simultaneous inactivation of agonistic and antagonistic muscles acting on a single joint, near the time of peak velocity. The second theoretical result is that, conversely, the presence of non-smoothness in the cost function is a necessary condition for the existence of such inactivation. Second, during an experimental study, participants were asked to perform fast vertical arm movements with one, two, and three degrees of freedom. Observed trajectories, velocity profiles, and final postures were accurately simulated by the model. In accordance, electromyographic signals showed brief simultaneous inactivation of opposing muscles during movements. Thus, assuming that human movements are optimal with respect to a certain integral cost, the minimization of an absolute-work-like cost is supported by experimental observations. Such types of optimality criteria may be applied to a large range of biological movements.


Behavioural Brain Research | 2005

Mentally represented motor actions in normal aging: I. Age effects on the temporal features of overt and covert execution of actions

Xanthi Skoura; Charalambos Papaxanthis; Annie Vinter; Thierry Pozzo

The present study examines the temporal features of overt and covert actions as a function of normal aging. In the first experiment, we tested three motor tasks (walking, sit-stand-sit, arm pointing) that did not imply any particular spatiotemporal constraints, and we compared the duration of their overt and covert execution in three different groups of age (mean ages: 22.5, 66.2 and 73.4 years). We found that the ability of generating motor images did not differentiate elderly subjects from young subjects. Precisely, regarding overt and covert durations, subjects presented similarities for the walking and pointing tasks and dissimilarities for the stand-sit-stand task. Furthermore, the timing variability of imagined movements was always greater compared to actual movements and was of the same amount in the three groups of age. In the second experiment, we investigated the effect of age (three groups with mean ages: 22, 64.8 and 73.2 years) upon temporal characteristics of covert and overt movements involving strong spatiotemporal constraints (speed/accuracy trade-off paradigm). During overt execution young and elderly subjects respected Fittss law despite the fact that movement speed progressively decreased with age. Thus, while execution is deteriorated, the motor preparation process is still intact in old age, and follows well-known laws of biological motions. For covert execution, movement speed progressively decreased with age but elderly subjects did not respect Fittss law. This suggests that the generation and control of motor intentions that consciously do not come to execution, particularly those concerning complex motor actions are progressively perturbed in the aging brain.


Neuroscience | 2005

KINEMATIC AND DYNAMIC PROCESSES FOR THE CONTROL OF POINTING MOVEMENTS IN HUMANS REVEALED BY SHORT-TERM EXPOSURE TO MICROGRAVITY

Charalambos Papaxanthis; Thierry Pozzo; Joseph McIntyre

The generation of accurate motor commands requires implicit knowledge of both limb and environmental dynamics. The action of gravity on moving limb segments must be taken into account within the motor command, and may affect the limb trajectory chosen to accomplish a given motor task. Exactly how the CNS deals with these gravitoinertial forces remains an open question. Does the CNS measure gravitational forces directly, or are they accommodated in the motor plan by way of internal models of physical laws? In this study five male subjects participated. We measured kinematic and dynamic parameters of upward and downward arm movements executed at two different speeds, in both normal Earth gravity and in the weightless conditions of parabolic flight. Exposure to microgravity affected velocity profiles for both directions and speeds. The shape of velocity profiles (the ratio of maximum to mean velocity) and movement duration both showed transient perturbations initially in microgravity, but returned to normal gravity values with practice in 0 x g. Differences in relative time to peak velocity between upward versus downward movements, persisted for all trial performed in weightlessness. These differences in kinematic profiles and in the torque profiles used to produce them, diminished, however, with practice in 0 x g. These findings lead to the conclusion that the CNS explicitly represents gravitational and inertial forces in the internal models used to generate and execute arm movements. Furthermore, the results suggest that the CNS adapts motor plans to novel environments on different time scales; dynamics adapt first to reproduce standard kinematics, and then kinematics patterns are adapted to optimize dynamics.


Experimental Brain Research | 2002

Coordination between equilibrium and hand trajectories during whole body pointing movements

Thierry Pozzo; Paul Stapley; Charalambos Papaxanthis

We examined the coordination between equilibrium and voluntary pointing movements executed from the standing position, using the whole body. It has previously been shown that trunk movement has little effect upon kinematic characteristics of hand pointing when movements are executed in the sitting position. The present study asked if elements of hand trajectory are modified by requirements of large trunk displacements and fine equilibrium control when pointing movements are executed from the standing position. To achieve this, center of pressure (CoP) and center of mass (CoM) displacements were analyzed along with the kinematics of the pointing hand. Results showed that the CoM was not stabilized (it displaced between 23% and 61±21% of the foot’s length), confirming that instead of a compensation of mechanical perturbations due to arm and trunk movements, the present equilibrium strategy consisted of controlling CoM acceleration towards the target. Hand paths were curved and were not distance or speed invariant. Rather than simple inefficiencies in programming or execution, path curvature suggested that different hand movement strategies were chosen as a function of equilibrium constraints. In light of these results, we hypothesize that postural stability may play a role in the generation of hand trajectory for complex, whole-body pointing movements, in addition to constraints placed upon end-effector kinematics or the dynamic optimization of upper-limb movements. A dependent regulation of equilibrium and spatial components of the movement is proposed.

Collaboration


Dive into the Thierry Pozzo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bastien Berret

Institut Universitaire de France

View shared research outputs
Top Co-Authors

Avatar

Luciano Fadiga

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stefano Panzeri

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alessandra Sciutti

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Enrico Chiovetto

Istituto Italiano di Tecnologia

View shared research outputs
Researchain Logo
Decentralizing Knowledge