Thierry Robin
Commissariat à l'énergie atomique et aux énergies alternatives
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Thierry Robin.
Optics Express | 2012
Sylvain Girard; Marilena Vivona; Arnaud Laurent; Benoit Cadier; Claude Marcandella; Thierry Robin; Emmanuel Pinsard; Aziz Boukenter; Youcef Ouerdane
We investigated the efficiencies of two different approaches to increase the radiation hardness of optical amplifiers through development of improved rare-earth (RE) doped optical fibers. We demonstrated the efficiency of codoping with Cerium the core of Erbium/Ytterbium doped optical fibers to improve their radiation tolerance. We compared the γ-rays induced degradation of two amplifiers with comparable pre-irradiation characteristics (~19 dB gain for an input power of ~10 dBm): first one is made with the standard core composition whereas the second one is Ce codoped. The radiation tolerance of the Ce-codoped fiber based amplifier is strongly enhanced. Its output gain decrease is limited to ~1.5 dB after a dose of ~900 Gy, independently of the pump power used, which authorizes the use of such fiber-based systems for challenging space missions associated with high total doses. We also showed that the responses of the two amplifiers with or without Ce-codoping can be further improved by another technique: the pre-loading of these fibers with hydrogen. In this case, the gain degradation is limited to 0.4 dB for the amplifier designed with the standard composition fiber whereas 0.2 dB are reported for the one made with Ce-codoped fiber after a cumulated dose of ~900 Gy. The mechanisms explaining the positive influences of these two treatments are discussed.
Optics Express | 2011
Stefano Taccheo; Hrvoje Gebavi; Achille Monteville; O. Le Goffic; David Landais; David Méchin; Denis Tregoat; Benoit Cadier; Thierry Robin; Daniel Milanese; Tim Durrant
We report on an extensive investigation of photodarkening in Yb-doped silica fibers. A set of similar fibers, covering a large Yb concentration range, was made so as to compare the photodarkening induced losses. Careful measurements were made to ensure equal and uniform inversion for all the tested fibers. The results show that, with the specific set-up, the stretching parameter obtained through fitting has a very limited variation. This gives more meaning to the fitting parameters. Results tend to indicate a square law dependence of the concentration of excited ions on the final saturated loss. We also demonstrate self-similarity of loss evolution when experimental curves are simply normalized to fitting parameters. This evidence of self-similarity also supports the possibility of introducing a preliminary figure of merit for Yb-doped fiber. This will allow the impact of photodarkening on laser/amplifier devices to be evaluated.
Optical Materials Express | 2012
Hrvoje Gebavi; Stefano Taccheo; Denis Tregoat; Achille Monteville; Thierry Robin
In the present study, we examined photodarkening loss reduction in Yb3+ doped aluminosilicate fibers by utilizing 633 nm light irradiation. It is demonstrated that the final photobleaching value is intensity dependent, but the percentage of photodarkening reduction does not depend on dopant concentrations for settled bleaching intensity. Further examination was committed to explore the photobleaching starting from different photodarkening loss levels while keeping the same dopant concentration and subsequently the other way around. This approach related photobleaching with the number of photodarkening induced color centers and also showed that photobleaching was dopant concentration dependent. In all experiments an unbleachable residual loss for the bleaching powers up to ~100 W/mm2 was found. To the best of our knowledge this is the most extensive investigation of photobleaching effect.
Optics Express | 2011
Hrvoje Gebavi; Stefano Taccheo; Daniel Milanese; Achille Monteville; Olivier Le Goffic; David Landais; David Méchin; Denis Tregoat; Benoit Cadier; Thierry Robin
The present work describes photodarkening from the viewpoint of cooperative luminescence. The temporal evolution of both effects was measured simultaneously by means of ytterbium doped aluminosilicate fibers for concentrations up to 1.8 wt% Yb3+. The quadratic dependence of photodarkening and cooperative luminescence versus dopant concentration was observed. The change in the photodarkening and cooperative luminescence mutual dynamics for highly and low doped fibers is ascribed to a different ion number which forms the cluster. Cooperative luminescence is proved to be a natural probe for photodarkening since it provides new pieces of information and contributes to the photodarkening mechanism description.
Optics Letters | 2014
Sylvain Girard; Arnaud Laurent; E. Pinsard; Thierry Robin; Benoit Cadier; Mathieu Boutillier; Claude Marcandella; A. Boukenter; Youcef Ouerdane
We present a new structure for erbium-doped optical fibers [hole-assisted carbon-coated, (HACC)] that, combined with an appropriate choice of codopants in the core, strongly enhances their radiation tolerance. We built an erbium-doped fiber amplifier based on this HACC fiber and characterize its degradation under γ-ray doses up to 315 krad (SiO2) in the ON mode. The 31 dB amplifier is practically radiation insensitive, with a gain change of merely -2.2×10(-3) dB/krad. These performances authorize the use of HACC doped fibers and amplifiers for various applications in environments associated with todays missions (of doses up to 50 krad) and even for future space missions associated with higher dose constraints.
Optics Letters | 2013
Hrvoje Gebavi; Stefano Taccheo; Laurent Lablonde; Benoit Cadier; Thierry Robin; David Méchin; Denis Tregoat
In this work, the influence of photodarkening (PD) and photobleaching (PB) on the lasing features of the ytterbium-doped aluminosilicate fiber lasers is examined. Simultaneous PD and PB with 633 nm irradiation was monitored at the lasing wavelength of 1070 nm and compared with individually caused PD and PB effects. The variation of laser threshold and slope efficiency was reported. By analyzing the laser performances it was found that the ratio of excess loss at 633 and 1070 nm is expected to be less than 20. In addition, considerable mitigation of the PD with 633 nm light irradiation is demonstrated.
Optics Express | 2014
Riccardo Piccoli; Thierry Robin; Thomas Brand; Udo Klotzbach; Stefano Taccheo
Al-silicate fibers have excellent manufacturing quality. Unfortunately, high-Yb doping concentration may be limited by severe losses induced by photodarkening phenomenon. In this paper we demonstrate for the first time that Al-silicate Yb-doped fibers with high-inversion and doping concentration above 1 wt% can be successfully used by implementing a simple optical bleaching scheme. A co-injection into the active fiber of a few mW of light at around 550 nm wavelength successfully eliminates almost all photodarkening induced losses. We demonstrate operation at above 90% of the pristine output power level in several lasers with up to 30% Yb ions in the excited state. These results may allow using Yb-doped Al-silicate fibers with doping level increased by one order of magnitude. Finally, we provide a comprehensive picture of main parameters affecting photobleaching performance and, to the best of our knowledge, we report the first quantitative measurement of the Ytterbium excited state absorption cross-section in the visible range.
Journal of Lightwave Technology | 2013
Sylvain Girard; Luciano Mescia; Marilena Vivona; Arnaud Laurent; Youcef Ouerdane; Claude Marcandella; F. Prudenzano; Aziz Boukenter; Thierry Robin; Philippe Paillet; Vincent Goiffon; Marc Gaillardin; Benoit Cadier; Emmanuel Pinsard; Marco Cannas; R. Boscaino
We present an approach coupling a limited experimental number of tests with numerical simulations regarding the design of radiation-hardened (RH) rare earth (RE)-doped fiber amplifiers. Radiation tests are done on RE-doped fiber samples in order to measure and assess the values of the principal input parameters requested by the simulation tool based on particle swarm optimization (PSO) approach. The proposed simulation procedure is validated by comparing the calculation results with the measured degradations of two amplifiers made with standard and RH RE-doped optical fibers, respectively. After validation, the numerical code is used to theoretically investigate the influence of some amplifier design parameters on its sensitivity to radiations. Simulations show that the RE-doped fiber length used in the amplifier needs to be adjusted to optimize the amplifier performance over the whole space mission profile rather than to obtain the maximal amplification efficiency before its integration in the harsh environment. By combining this coupled approach with the newly-developed RH RE-doped fibers, fiber-based amplifiers nearly insensitive to space environment may be designed in the future.
Proceedings of SPIE | 2008
Kent Erik Mattsson; Stig Nissen Knudsen; Benoit Cadier; Thierry Robin
A model description of photo darkening based on 30 characterised fibres in an un-seeded amplifier setup is presented. Photo darkening of ytterbium / aluminium and/or phosphorous co-doped silica fibres is found to saturate following prolonged exposure to pump radiation. The photo darkening is associated with non-binding oxygen at surfaces of ytterbium / aluminium clusters. The dominant colour centre at near infrared wavelengths in MCVD material is a combination of 1.9 eV (FWHM of 0.62 eV) and 2.4 eV (FWHM of 0.85 eV) absorption dependent on average phonon energy of the glass material.
Optics Letters | 2015
Christian Kneis; Brenda Donelan; Antoine Berrou; Inka Manek-Hönninger; Thierry Robin; Benoit Cadier; Marc Eichhorn; Christelle Kieleck
A diode-pumped, actively mode-locked high-power thulium (Tm3+)-doped double-clad silica fiber laser is demonstrated, providing an average output power in mode-locked (continuous wave) operation of 53 W (72 W) with a slope efficiency of 34% (38%). Mode-locking in the 6th-harmonic order was obtained by an acousto-optic modulator driven at 66 MHz without dispersion compensation. The shortest measured output pulse width was 200 ps. Owing to a diffraction grating as cavity end mirror, the central wavelength could be tuned from 1.95 to 2.13 μm. The measured beam quality in mode-locked and continuous wave operation has been close to the diffraction limit.