Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thierry Sifferlen is active.

Publication


Featured researches published by Thierry Sifferlen.


Journal of Medicinal Chemistry | 2009

Design and Preparation of Potent, Nonpeptidic, Bioavailable Renin Inhibitors

Olivier Bezencon; Daniel Bur; Thomas Weller; Sylvia Richard-Bildstein; Lubos Remen; Thierry Sifferlen; Olivier Corminboeuf; Corinna Grisostomi; Christoph Boss; Lars Prade; Stephane Delahaye; Alexander Treiber; Panja Strickner; Christoph Binkert; Patrick Hess; Beat Steiner; Walter Fischli

Starting from known piperidine renin inhibitors, a new series of 3,9-diazabicyclo[3.3.1]nonene derivatives was rationally designed and prepared. Optimization of the positions 3, 6, and 7 of the diazabicyclonene template led to potent renin inhibitors. The substituents attached at the positions 6 and 7 were essential for the binding affinity of these compounds for renin. The introduction of a substituent attached at the position 3 did not modify the binding affinity but allowed the modulation of the ADME properties. Our efforts led to the discovery of compound (+)-26g that inhibits renin with an IC(50) of 0.20 nM in buffer and 19 nM in plasma. The pharmacokinetics properties of this and other similar compounds are discussed. Compound (+)-26g is well absorbed in rats and efficacious at 10 mg/kg in vivo.


Chimia | 2003

Tetrahydroisoquinolines as orexin receptor antagonists: Strategies for lead optimization by solution-phase chemistry

Ralf Koberstein; Hamed Aissaoui; Daniel Bur; Martine Clozel; Walter Fischli; Francois Jenck; Célia Mueller; Oliver Nayler; Thierry Sifferlen; Alexander Treiber; Thomas Weller

Different techniques can be applied for the automated production of small and large compound collections. Large libraries that are often generated and tested during the lead-finding stage of a project are typically produced by solid-phase chemistry. Libraries that are significantly smaller in size are often synthesized in solution. Chemistry in solution is rather versatile, offers numerous advantages and is therefore often the method of choice for generating small libraries during a lead optimization process. Fast and reliable purification procedures are required to yield compounds of high quality that can be immediately used in biological as well as pharmacological assays. Solution-phase chemistry combined with automated purification was applied to optimize initial lead inhibitors for the two human orexin receptors OX1 and OX2. Starting from a submicro-molar OX1 selective lead compound, low nanomolar analogues with improved physico-chemical properties were synthesized that antagonize either one or both orexin receptors.


ChemMedChem | 2014

Structure–Activity Relationship, Biological, and Pharmacological Characterization of the Proline Sulfonamide ACT-462206: a Potent, Brain-Penetrant Dual Orexin 1/Orexin 2 Receptor Antagonist

Christoph Boss; Catherine Roch‐Brisbare; Michel A. Steiner; Alexander Treiber; Hendrik Dietrich; Francois Jenck; Markus von Raumer; Thierry Sifferlen; Christine Brotschi; Bibia Heidmann; Jodi T. Williams; Hamed Aissaoui; Romain Siegrist; John Gatfield

The orexin system consists of two G‐protein‐coupled receptors, the orexin 1 and orexin 2 receptors, widely expressed in diverse regions of the brain, and two peptide agonists, orexin A and orexin B, which are produced in a small assembly of neurons in the lateral hypothalamus. The orexin system plays an important role in the maintenance of wakefulness. Several compounds (almorexant, SB‐649868, suvorexant) have been in advanced clinical trials for treating primary insomnia. ACT‐462206 is a new, potent, and selective dual orexin receptor antagonist (DORA) that inhibits the stimulating effects of the orexin peptides at both the orexin 1 and 2 receptors. It decreases wakefulness and increases non‐rapid eye movement (non‐REM) and REM sleep while maintaining natural sleep architectures in rat and dog electroencephalography/electromyography (EEG/EMG) experiments. ACT‐462206 shows anxiolytic‐like properties in rats without affecting cognition and motor function. It is therefore a potential candidate for the treatment of insomnia.


Bioorganic & Medicinal Chemistry Letters | 2010

Novel pyrazolo-tetrahydropyridines as potent orexin receptor antagonists.

Thierry Sifferlen; Christoph Boss; Emmanuelle Cottreel; Ralf Koberstein; Markus Gude; Hamed Aissaoui; Thomas Weller; John Gatfield; Catherine Brisbare-Roch; Francois Jenck

A novel series of dual orexin receptor antagonists was prepared by heteroaromatic five-membered ring system replacement of the dimethoxyphenyl moiety contained in the tetrahydroisoquinoline core skeleton of almorexant. Thus, replacement of the dimethoxyphenyl by a substituted pyrazole and additional optimization of the substitution pattern of the phenethyl motif allowed the identification of potent antagonists with low nanomolar affinity for hOX(1)R and hOX(2)R. The synthesis and structure-activity relationship of these novel antagonists will be discussed in this communication. These investigations furnished several suitable candidates for further evaluation in in vivo studies in rats.


Bioorganic & Medicinal Chemistry Letters | 2014

Discovery of substituted lactams as novel dual orexin receptor antagonists. Synthesis, preliminary structure–activity relationship studies and efforts towards improved metabolic stability and pharmacokinetic properties. Part 1

Thierry Sifferlen; Amandine Boller; Audrey Chardonneau; Emmanuelle Cottreel; Johannes Hoecker; Hamed Aissaoui; Jodi T. Williams; Christine Brotschi; Bibia Heidmann; Romain Siegrist; John Gatfield; Alexander Treiber; Catherine Brisbare-Roch; Francois Jenck; Christoph Boss

Starting from a thiazolidin-4-one HTS hit, a novel series of substituted lactams was identified and developed as dual orexin receptor antagonists. In this Letter, we describe our initial efforts towards the improvement of potency and metabolic stability. These investigations delivered optimized lead compounds with CNS drug-like properties suitable for further optimization.


Bioorganic & Medicinal Chemistry Letters | 2013

Structure–activity relationship studies and sleep-promoting activity of novel 1-chloro-5,6,7,8-tetrahydroimidazo[1,5-a]pyrazine derivatives as dual orexin receptor antagonists. Part 2

Thierry Sifferlen; Ralf Koberstein; Emmanuelle Cottreel; Amandine Boller; Thomas Weller; John Gatfield; Catherine Brisbare-Roch; Francois Jenck; Christoph Boss

Replacement of the dimethoxyphenyl moiety in the core skeleton of almorexant by appropriately substituted imidazoles afforded novel 1-chloro-5,6,7,8-tetrahydroimidazo[1,5-a]pyrazine derivatives as potent dual orexin receptor antagonists. We describe in this Letter our efforts to further optimize the potency and brain penetration of these derivatives by fine-tuning of the pivotal phenethyl motif, and we comment on the sleep-promoting activity of selected compounds in a rat electroencephalographic (EEG) model.


Bioorganic & Medicinal Chemistry Letters | 2009

New classes of potent and bioavailable human renin inhibitors

Lubos Remen; Olivier Bezencon; Sylvia Richard-Bildstein; Daniel Bur; Lars Prade; Olivier Corminboeuf; Christoph Boss; Corinna Grisostomi; Thierry Sifferlen; Panja Strickner; Patrick Hess; Stephane Delahaye; Alexander Treiber; Thomas Weller; Christoph Binkert; Beat Steiner; Walter Fischli

New classes of de novo designed renin inhibitors are reported. Some of these compounds display excellent in vitro and in vivo activities toward human renin in a TGR model. The synthesis of these new types of mono- and bicyclic scaffolds are reported, and properties of selected compounds discussed.


Bioorganic & Medicinal Chemistry Letters | 2015

Substituted pyrrolidin-2-ones: Centrally acting orexin receptor antagonists promoting sleep. Part 2.

Thierry Sifferlen; Amandine Boller; Audrey Chardonneau; Emmanuelle Cottreel; John Gatfield; Alexander Treiber; Catherine Roch; Francois Jenck; Hamed Aissaoui; Jodi T. Williams; Christine Brotschi; Bibia Heidmann; Romain Siegrist; Christoph Boss

Starting from advanced pyrrolidin-2-one lead compounds, this novel series of small-molecule orexin receptor antagonists was further optimized by fine-tuning of the C-3 substitution at the γ-lactam ring. We discuss our design to align in vitro potency with metabolic stability and improved physicochemical/pharmacokinetic properties while avoiding P-glycoprotein-mediated efflux. These investigations led to the identification of the orally active 3-hydroxypyrrolidin-2-one 46, a potent and selective orexin-2 receptor antagonist, that achieved good brain exposure and promoted physiological sleep in rats.


Bioorganic & Medicinal Chemistry Letters | 2013

Synthesis, structure–activity relationship studies, and identification of novel 5,6,7,8-tetrahydroimidazo[1,5-a]pyrazine derivatives as dual orexin receptor antagonists. Part 1

Thierry Sifferlen; Ralf Koberstein; Emmanuelle Cottreel; Amandine Boller; Thomas Weller; John Gatfield; Catherine Brisbare-Roch; Francois Jenck; Christoph Boss

A novel series of non-peptidic OX1R/OX2R orexin receptor antagonists was prepared by heterocyclic replacement of the dimethoxyphenyl moiety contained in the tetrahydroisoquinoline core skeleton of almorexant. Introduction of substituted imidazole moieties delivered potent dual orexin receptor antagonists with nanomolar potency for hOX1R and hOX2R suitable for further fine-tuning. The preparation of these novel orexin receptor antagonists and the outcome of preliminary structure-activity relationship studies are described in this communication.


ChemMedChem | 2016

Discovery of Highly Potent Dual Orexin Receptor Antagonists via a Scaffold-Hopping Approach.

Bibia Heidmann; John Gatfield; Catherine Roch; Alexander Treiber; Simone Tortoioli; Christine Brotschi; Jodi T. Williams; Martin Bolli; Stefan Abele; Thierry Sifferlen; Francois Jenck; Christoph Boss

Starting from suvorexant (trade name Belsomra), we successfully identified interesting templates leading to potent dual orexin receptor antagonists (DORAs) via a scaffold‐hopping approach. Structure–activity relationship optimization allowed us not only to improve the antagonistic potency on both orexin 1 and orexin 2 receptors (Ox1 and Ox2, respectively), but also to increase metabolic stability in human liver microsomes (HLM), decrease time‐dependent inhibition of cytochrome P450 (CYP) 3A4, and decrease P‐glycoprotein (Pgp)‐mediated efflux. Compound 80 c [{(1S,6R)‐3‐(6,7‐difluoroquinoxalin‐2‐yl)‐3,8‐diazabicyclo[4.2.0]octan‐8‐yl}(4‐methyl‐[1,1′‐biphenyl]‐2‐yl)methanone] is a potent and selective DORA that inhibits the stimulating effects of orexin peptides OXA and OXB at both Ox1 and Ox2. In calcium‐release assays, 80 c was found to exhibit an insurmountable antagonistic profile at both Ox1 and Ox2, while displaying a sleep‐promoting effect in rat and dog models, similar to that of the benchmark compound suvorexant.

Collaboration


Dive into the Thierry Sifferlen's collaboration.

Researchain Logo
Decentralizing Knowledge