Thierry Touzé
University of Paris-Sud
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Thierry Touzé.
Journal of Biological Chemistry | 2006
Meriem El Ghachi; Ahmed Bouhss; Hélène Barreteau; Thierry Touzé; Geneviève Auger; Didier Blanot; Dominique Mengin-Lecreulx
Colicin M was earlier demonstrated to provoke Escherichia coli cell lysis via inhibition of cell wall peptidoglycan (murein) biosynthesis. As the formation of the O-antigen moiety of lipopolysaccharides was concomitantly blocked, it was hypothesized that the metabolism of undecaprenyl phosphate, an essential carrier lipid shared by these two pathways, should be the target of this colicin. However, the exact target and mechanism of action of colicin M was unknown. Colicin M was now purified to near homogeneity, and its effects on cell wall peptidoglycan metabolism reinvestigated. It is demonstrated that colicin M exhibits both in vitro and in vivo enzymatic properties of degradation of lipid I and lipid II peptidoglycan intermediates. Free undecaprenol and either 1-pyrophospho-MurNAc-pentapeptide or 1-pyrophospho-MurNAc-(pentapeptide)-Glc-NAc were identified as the lipid I and lipid II degradation products, respectively, showing that the cleavage occurred between the lipid moiety and the pyrophosphoryl group. This is the first time such an activity is described. Neither undecaprenyl pyrophosphate nor the peptidoglycan nucleotide precursors were substrates of colicin M, indicating that both undecaprenyl and sugar moieties were essential for activity. The bacteriolytic effect of colicin M therefore appears to be the consequence of an arrest of peptidoglycan polymerization steps provoked by enzymatic degradation of the undecaprenyl phosphate-linked peptidoglycan precursors.
Molecular Microbiology | 2007
Thierry Touzé; An X. Tran; Jessica V. Hankins; Dominique Mengin-Lecreulx; M. Stephen Trent
One‐third of the lipid A found in the Escherichia coli outer membrane contains an unsubstituted diphosphate unit at position 1 (lipid A 1‐diphosphate). We now report an inner membrane enzyme, LpxT (YeiU), which specifically transfers a phosphate group to lipid A, forming the 1‐diphosphate species. 32P‐labelled lipid A obtained from lpxT mutants do not produce lipid A 1‐diphosphate. In vitro assays with Kdo2‐[4′‐32P]lipid A as the acceptor shows that LpxT uses undecaprenyl pyrophosphate as the substrate donor. Inhibition of lipid A 1‐diphosphate formation in wild‐type bacteria was demonstrated by sequestering undecaprenyl pyrophosphate with the cyclic polypeptide antibiotic bacitracin, providing evidence that undecaprenyl pyrophosphate serves as the donor substrate within whole bacteria. LpxT‐catalysed phosphorylation is dependent upon transport of lipid A across the inner membrane by MsbA, a lipid A flippase, indicating a periplasmic active site. In conclusion, we demonstrate a novel pathway in the periplasmic modification of lipid A that is directly linked to the synthesis of undecaprenyl phosphate, an essential carrier lipid required for the synthesis of various bacterial polymers, such as peptidoglycan.
Journal of Biological Chemistry | 2008
Thierry Touzé; Didier Blanot; Dominique Mengin-Lecreulx
The synthesis of the lipid carrier undecaprenyl phosphate (C55-P) requires the dephosphorylation of its precursor, undecaprenyl pyrophosphate (C55-PP). The latter lipid is synthesized de novo in the cytosol and is also regenerated after its release from the C55-PP-linked glycans in the periplasm. In Escherichia coli the dephosphorylation of C55-PP was shown to involve four integral membrane proteins, BacA, and three members of the type 2 phosphatidic acid phosphatase family, PgpB, YbjG, and YeiU. Here, the PgpB protein was purified to homogeneity, and its phosphatase activity was examined. This enzyme was shown to catalyze the dephosphorylation of C55-PP with a relatively low efficiency compared with diacylglycerol pyrophosphate and farnesyl pyrophosphate (C15-PP) lipid substrates. However, the in vitro C55-PP phosphatase activity of PgpB was specifically enhanced by different phospholipids. We hypothesize that the phospholipids are important determinants to ensure proper conformation of the atypical long axis C55 carrier lipid in membranes. Furthermore, a topological analysis demonstrated that PgpB contains six transmembrane segments, a large periplasmic loop, and the type 2 phosphatidic acid phosphatase signature residues at a periplasmic location.
Journal of Bacteriology | 2009
Hélène Barreteau; Ahmed Bouhss; Martine Fourgeaud; Jean-Luc Mainardi; Thierry Touzé; Fabien Gérard; Didier Blanot; Michel Arthur; Dominique Mengin-Lecreulx
Genes encoding proteins that exhibit similarity to the C-terminal domain of Escherichia coli colicin M were identified in the genomes of some Pseudomonas species, namely, P. aeruginosa, P. syringae, and P. fluorescens. These genes were detected only in a restricted number of strains. In P. aeruginosa, for instance, the colicin M homologue gene was located within the ExoU-containing genomic island A, a large horizontally acquired genetic element and virulence determinant. Here we report the cloning of these genes from the three Pseudomonas species and the purification and biochemical characterization of the different colicin M homologues. All of them were shown to exhibit Mg(2+)-dependent diphosphoric diester hydrolase activity toward the two undecaprenyl phosphate-linked peptidoglycan precursors (lipids I and II) in vitro. In all cases, the site of cleavage was localized between the undecaprenyl and pyrophospho-MurNAc moieties of these precursors. These enzymes were not active on the cytoplasmic precursor UDP-MurNAc-pentapeptide or (or only very poorly) on undecaprenyl pyrophosphate. These colicin M homologues have a narrow range of antibacterial activity. The P. aeruginosa protein at low concentrations was shown to inhibit growth of sensitive P. aeruginosa strains. These proteins thus represent a new class of bacteriocins (pyocins), the first ones reported thus far in the genus Pseudomonas that target peptidoglycan metabolism.
Journal of Chromatography B | 2009
Hélène Barreteau; Sophie Magnet; Meriem El Ghachi; Thierry Touzé; Michel Arthur; Dominique Mengin-Lecreulx; Didier Blanot
Undecaprenyl phosphate is the essential lipid involved in the transport of hydrophilic motifs across the bacterial membranes during the synthesis of cell wall polymers such as peptidoglycan. A HPLC procedure was developed for the quantification of undecaprenyl phosphate and its two derivatives, undecaprenyl pyrophosphate and undecaprenol. During the exponential growth phase, the pools of undecaprenyl phosphate and undecaprenyl pyrophosphate were ca. 75 and 270 nmol/g of cell dry weight, respectively, in Escherichia coli, and ca. 50 and 150 nmol/g, respectively, in Staphylococcus aureus. Undecaprenol was detected in S. aureus (70 nmol/g), but not in E. coli (<1 nmol/g).
Microbial Drug Resistance | 2014
Guillaume Manat; Sophie Roure; Rodolphe Auger; Ahmed Bouhss; Hélène Barreteau; Dominique Mengin-Lecreulx; Thierry Touzé
During the biogenesis of bacterial cell-wall polysaccharides, such as peptidoglycan, cytoplasmic synthesized precursors should be trafficked across the plasma membrane. This essential process requires a dedicated lipid, undecaprenyl-phosphate that is used as a glycan lipid carrier. The sugar is linked to the lipid carrier at the inner face of the membrane and is translocated toward the periplasm, where the glycan moiety is transferred to the growing polymer. Undecaprenyl-phosphate originates from the dephosphorylation of its precursor undecaprenyl-diphosphate, with itself generated by de novo synthesis or by recycling after the final glycan transfer. Undecaprenyl-diphosphate is de novo synthesized by the cytosolic cis-prenyltransferase undecaprenyl-diphosphate synthase, which has been structurally and mechanistically characterized in great detail highlighting the condensation process. In contrast, the next step toward the formation of the lipid carrier, the dephosphorylation step, which has been overlooked for many years, has only started revealing surprising features. In contrast to the previous step, two unrelated families of integral membrane proteins exhibit undecaprenyl-diphosphate phosphatase activity: BacA and members of the phosphatidic acid phosphatase type 2 super-family, raising the question of the significance of this multiplicity. Moreover, these enzymes establish an unexpected link between the synthesis of bacterial cell-wall polymers and other biological processes. In the present review, the current knowledge in the field of the bacterial lipid carrier, its mechanism of action, biogenesis, recycling, regulation, and future perspective works are presented.
Journal of Biological Chemistry | 2010
Hélène Barreteau; Ahmed Bouhss; Fabien Gérard; Denis Duché; Boubekeur Boussaid; Didier Blanot; Roland Lloubès; Dominique Mengin-Lecreulx; Thierry Touzé
Colicin M inhibits Escherichia coli peptidoglycan synthesis through cleavage of its lipid-linked precursors. It has a compact structure, whereas other related toxins are organized in three independent domains, each devoted to a particular function: translocation through the outer membrane, receptor binding, and toxicity, from the N to the C termini, respectively. To establish whether colicin M displays such an organization despite its structural characteristics, protein dissection experiments were performed, which allowed us to delineate an independent toxicity domain encompassing exactly the C-terminal region conserved among colicin M-like proteins and covering about half of colicin M (residues 124–271). Surprisingly, the in vitro activity of the isolated domain was 45-fold higher than that of the full-length protein, suggesting a mechanism by which the toxicity of this domain is revealed following primary protein maturation. In vivo, the isolated toxicity domain appeared as toxic as the full-length protein under conditions where the reception and translocation steps were by-passed. Contrary to the full-length colicin M, the isolated domain did not require the presence of the periplasmic FkpA protein to be toxic under these conditions, demonstrating that FkpA is involved in the maturation process. Mutational analysis further identified five residues that are essential for cytotoxicity as well as in vitro lipid II-degrading activity: Asp-229, His-235, Asp-226, Tyr-228, and Arg-236. Most of these residues are surface-exposed and located relatively close to each other, hence suggesting they belong to the colicin M active site.
Journal of Bacteriology | 2010
Aurélie Barnéoud-Arnoulet; Hélène Barreteau; Thierry Touzé; Dominique Mengin-Lecreulx; Roland Lloubès; Denis Duché
Colicin M (ColM) is a bactericidal protein that kills sensitive cells by hydrolyzing lipid II, involved in the biosynthesis of cell wall peptidoglycan. It recognizes FhuA on the outer leaflet, and its translocation through the outer membrane depends on the energized Ton complex in the inner membrane. To be active in the periplasm, ColM must be translocated through the outer membrane and then interact with FkpA, a periplasmic protein that exhibits both cis- and trans-peptidylprolyl isomerase (PPiase) and chaperon activities. In an attempt to directly target ColM to the periplasm of the producing bacteria, we fused the presequence of OmpA to ColM (sp-ColM). We found that expression of this hybrid protein in an Escherichia coli strain devoid of ColM immunity protein (Cmi) was bactericidal. We showed that sp-ColM was correctly expressed, processed, and associated with the inner membrane. sp-ColM toxicity was related to its enzymatic activity and did not rely on the TonB import proteins or the FhuA receptor. The presence of both activity domains of FkpA was still required for sp-ColM activity. Analyses of deletion mutants of sp-ColM show that the domain required for toxicity corresponds to the C-terminal last 153 amino acids of ColM. Like the full-length protein, this domain is not active in the presence of the immunity protein Cmi. On the other hand, it does not require FkpA for toxic activity.
Microbial Drug Resistance | 2012
Hélène Barreteau; Meriem El Ghachi; Aurélie Barnéoud-Arnoulet; Emmanuelle Sacco; Thierry Touzé; Denis Duché; Fabien Gérard; Mark A. Brooks; Delphine Patin; Ahmed Bouhss; Didier Blanot; Herman van Tilbeurgh; Michel Arthur; Roland Lloubès; Dominique Mengin-Lecreulx
For a long time, colicin M was known for killing susceptible Escherichia coli cells by interfering with cell wall peptidoglycan biosynthesis, but its precise mode of action was only recently elucidated: this bacterial toxin was demonstrated to be an enzyme that catalyzes the specific degradation of peptidoglycan lipid intermediate II, thereby provoking the arrest of peptidoglycan synthesis and cell lysis. The discovery of this activity renewed the interest in this colicin and opened the way for biochemical and structural analyses of this new class of enzyme (phosphoesterase). The identification of a few orthologs produced by pathogenic strains of Pseudomonas further enlarged the field of investigation. The present article aims at reviewing recently acquired knowledge on the biology of this small family of bacteriocins.
PLOS ONE | 2015
Guillaume Manat; Meriem El Ghachi; Rodolphe Auger; Karima Baouche; Samir Olatunji; Frédéric Kerff; Thierry Touzé; Dominique Mengin-Lecreulx; Ahmed Bouhss
Several integral membrane proteins exhibiting undecaprenyl-pyrophosphate (C55-PP) phosphatase activity were previously identified in Escherichia coli that belonged to two distinct protein families: the BacA protein, which accounts for 75% of the C55-PP phosphatase activity detected in E. coli cell membranes, and three members of the PAP2 phosphatidic acid phosphatase family, namely PgpB, YbjG and LpxT. This dephosphorylation step is required to provide the C55-P carrier lipid which plays a central role in the biosynthesis of various cell wall polymers. We here report detailed investigations of the biochemical properties and membrane topology of the BacA protein. Optimal activity conditions were determined and a narrow-range substrate specificity with a clear preference for C55-PP was observed for this enzyme. Alignments of BacA protein sequences revealed two particularly well-conserved regions and several invariant residues whose role in enzyme activity was questioned by using a site-directed mutagenesis approach and complementary in vitro and in vivo activity assays. Three essential residues Glu21, Ser27, and Arg174 were identified, allowing us to propose a catalytic mechanism for this enzyme. The membrane topology of the BacA protein determined here experimentally did not validate previous program-based predicted models. It comprises seven transmembrane segments and contains in particular two large periplasmic loops carrying the highly-conserved active site residues. Our data thus provide evidence that all the different E. coli C55-PP phosphatases identified to date (BacA and PAP2) catalyze the dephosphorylation of C55-PP molecules on the same (outer) side of the plasma membrane.