Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thierry Wirth is active.

Publication


Featured researches published by Thierry Wirth.


Molecular Microbiology | 2006

Sex and virulence in Escherichia coli: an evolutionary perspective.

Thierry Wirth; Daniel Falush; Ruiting Lan; Frances M. Colles; Patience Mensa; Lothar H. Wieler; Helge Karch; Peter R. Reeves; Martin C. J. Maiden; Howard Ochman; Mark Achtman

Pathogenic Escherichia coli cause over 160 million cases of dysentery and one million deaths per year, whereas non‐pathogenic E. coli constitute part of the normal intestinal flora of healthy mammals and birds. The evolutionary pathways underlying this dichotomy in bacterial lifestyle were investigated by multilocus sequence typing of a global collection of isolates. Specific pathogen types [enterohaemorrhagic E. coli, enteropathogenic E. coli, enteroinvasive E. coli, K1 and Shigella] have arisen independently and repeatedly in several lineages, whereas other lineages contain only few pathogens. Rates of evolution have accelerated in pathogenic lineages, culminating in highly virulent organisms whose genomic contents are altered frequently by increased rates of homologous recombination; thus, the evolution of virulence is linked to bacterial sex. This long‐term pattern of evolution was observed in genes distributed throughout the genome, and thereby is the likely result of episodic selection for strains that can escape the host immune response.


Nature Genetics | 2010

Yersinia pestis genome sequencing identifies patterns of global phylogenetic diversity

Giovanna Morelli; Yajun Song; Camila J. Mazzoni; Mark Eppinger; Philippe Roumagnac; David M. Wagner; Mirjam Feldkamp; Barica Kusecek; Amy J. Vogler; Yanjun Li; Yujun Cui; Nicholas R. Thomson; Thibaut Jombart; Raphaël Leblois; Peter Lichtner; Lila Rahalison; Jeannine M. Petersen; Francois Balloux; Paul Keim; Thierry Wirth; Jacques Ravel; Ruifu Yang; Elisabeth Carniel; Mark Achtman

Pandemic infectious diseases have accompanied humans since their origins1, and have shaped the form of civilizations2. Of these, plague is possibly historically the most dramatic. We reconstructed historical patterns of plague transmission through sequence variation in 17 complete genome sequences and 933 single nucleotide polymorphisms (SNPs) within a global collection of 286 Yersinia pestis isolates. Y. pestis evolved in or near China, and has been transmitted via multiple epidemics that followed various routes, probably including transmissions to West Asia via the Silk Road and to Africa by Chinese marine voyages. In 1894, Y. pestis spread to India and radiated to diverse parts of the globe, leading to country-specific lineages that can be traced by lineage-specific SNPs. All 626 current isolates from the U.S.A. reflect one radiation and 82 isolates from Madagascar represent a second. Subsequent local microevolution of Y. pestis is marked by sequential, geographically-specific SNPs.Plague is a pandemic human invasive disease caused by the bacterial agent Yersinia pestis. We here report a comparison of 17 whole genomes of Y. pestis isolates from global sources. We also screened a global collection of 286 Y. pestis isolates for 933 SNPs using Sequenom MassArray SNP typing. We conducted phylogenetic analyses on this sequence variation dataset, assigned isolates to populations based on maximum parsimony and, from these results, made inferences regarding historical transmission routes. Our phylogenetic analysis suggests that Y. pestis evolved in or near China and spread through multiple radiations to Europe, South America, Africa and Southeast Asia, leading to country-specific lineages that can be traced by lineage-specific SNPs. All 626 current isolates from the United States reflect one radiation, and 82 isolates from Madagascar represent a second radiation. Subsequent local microevolution of Y. pestis is marked by sequential, geographically specific SNPs.


PLOS Pathogens | 2008

A new perspective on Listeria monocytogenes evolution.

Marie Ragon; Thierry Wirth; Florian Hollandt; Rachel Lavenir; Marc Lecuit; Alban Le Monnier; Sylvain Brisse

Listeria monocytogenes is a model organism for cellular microbiology and host–pathogen interaction studies and an important food-borne pathogen widespread in the environment, thus representing an attractive model to study the evolution of virulence. The phylogenetic structure of L. monocytogenes was determined by sequencing internal portions of seven housekeeping genes (3,288 nucleotides) in 360 representative isolates. Fifty-eight of the 126 disclosed sequence types were grouped into seven well-demarcated clonal complexes (clones) that comprised almost 75% of clinical isolates. Each clone had a unique or dominant serotype (4b for clones 1, 2 and 4, 1/2b for clones 3 and 5, 1/2a for clone 7, and 1/2c for clone 9), with no association of clones with clinical forms of human listeriosis. Homologous recombination was extremely limited (r/m<1 for nucleotides), implying long-term genetic stability of multilocus genotypes over time. Bayesian analysis based on 438 SNPs recovered the three previously defined lineages, plus one unclassified isolate of mixed ancestry. The phylogenetic distribution of serotypes indicated that serotype 4b evolved once from 1/2b, the likely ancestral serotype of lineage I. Serotype 1/2c derived once from 1/2a, with reference strain EGDe (1/2a) likely representing an intermediate evolutionary state. In contrast to housekeeping genes, the virulence factor internalin (InlA) evolved by localized recombination resulting in a mosaic pattern, with convergent evolution indicative of natural selection towards a truncation of InlA protein. This work provides a reference evolutionary framework for future studies on L. monocytogenes epidemiology, ecology, and virulence.


PLOS Medicine | 2013

Whole Genome Sequencing versus Traditional Genotyping for Investigation of a Mycobacterium tuberculosis Outbreak: A Longitudinal Molecular Epidemiological Study

Andreas Roetzer; Roland Diel; Thomas A. Kohl; Christian Rückert; Ulrich Nübel; Jochen Blom; Thierry Wirth; Sebastian Jaenicke; Sieglinde Schuback; Sabine Rüsch-Gerdes; Philip Supply; Jörn Kalinowski; Stefan Niemann

In an outbreak investigation of Mycobacterium tuberculosis comparing whole genome sequencing (WGS) with traditional genotyping, Stefan Niemann and colleagues found that classical genotyping falsely clustered some strains, and WGS better reflected contact tracing.


PLOS Neglected Tropical Diseases | 2011

Comparative microsatellite typing of new world leishmania infantum reveals low heterogeneity among populations and its recent old world origin.

Katrin Kuhls; Mohammad Zahangir Alam; Elisa Cupolillo; Gabriel Eduardo Melim Ferreira; Isabel L. Mauricio; Rolando Oddone; M. Dora Feliciangeli; Thierry Wirth; Michael A. Miles; Gabriele Schönian

Leishmania infantum (syn. L. chagasi) is the causative agent of visceral leishmaniasis (VL) in the New World (NW) with endemic regions extending from southern USA to northern Argentina. The two hypotheses about the origin of VL in the NW suggest (1) recent importation of L. infantum from the Old World (OW), or (2) an indigenous origin and a distinct taxonomic rank for the NW parasite. Multilocus microsatellite typing was applied in a survey of 98 L. infantum isolates from different NW foci. The microsatellite profiles obtained were compared to those of 308 L. infantum and 20 L. donovani strains from OW countries previously assigned to well-defined populations. Two main populations were identified for both NW and OW L. infantum. Most of the NW strains belonged to population 1, which corresponded to the OW MON-1 population. However, the NW population was much more homogeneous. A second, more heterogeneous, population comprised most Caribbean strains and corresponded to the OW non-MON-1 population. All Brazilian L. infantum strains belonged to population 1, although they represented 61% of the sample and originated from 9 states. Population analysis including the OW L. infantum populations indicated that the NW strains were more similar to MON-1 and non-MON-1 sub-populations of L. infantum from southwest Europe, than to any other OW sub-population. Moreover, similarity between NW and Southwest European L. infantum was higher than between OW L. infantum from distinct parts of the Mediterranean region, Middle East and Central Asia. No correlation was found between NW L. infantum genotypes and clinical picture or host background. This study represents the first continent-wide analysis of NW L. infantum population structure. It confirmed that the agent of VL in the NW is L. infantum and that the parasite has been recently imported multiple times to the NW from southwest Europe.


The Journal of Infectious Diseases | 2002

Prospective study of a serogroup X Neisseria meningitidis outbreak in northern Ghana

Sebastien Gagneux; Abraham Hodgson; Thomas Smith; Thierry Wirth; Ingrid Ehrhard; Giovanna Morelli; Blaise Genton; Fred Binka; Mark Achtman; Gerd Pluschke

After an epidemic of serogroup A meningococcal meningitis in northern Ghana, a gradual disappearance of the epidemic strain was observed in a series of five 6-month carriage surveys of 37 randomly selected households. As serogroup A Neisseria meningitidis carriage decreased, an epidemic of serogroup X meningococcal carriage occurred, which reached 18% (53/298) of the people sampled during the dry season of 2000, coinciding with an outbreak of serogroup X disease. These carriage patterns were unrelated to that of Neisseria lactamica. Multilocus sequence typing and pulsed-field gel electrophoresis of the serogroup X bacteria revealed strong similarity with other strains isolated in Africa during recent decades. Three closely related clusters with distinct patterns of spread were identified among the Ghanian isolates, and further microevolution occurred after they arrived in the district. The occurrence of serogroup X outbreaks argues for the inclusion of this serogroup into a multivalent conjugate vaccine against N. meningitidis.


Molecular Ecology | 2005

Deciphering host migrations and origins by means of their microbes.

Thierry Wirth; Axel Meyer; Mark Achtman

Mitochondrial DNA and microsatellite sequences are powerful genetic markers for inferring the genealogy and the population genetic structure of animals but they have only limited resolution for organisms that display low genetic variability due to recent strong bottlenecks. An alternative source of data for deciphering migrations and origins in genetically uniform hosts can be provided by some of their microbes, if their evolutionary history correlates closely with that of the host. In this review, we first discuss how a variety of viruses, and the bacterium Helicobacter pylori, can be used as genetic tracers for one of the most intensively studied species, Homo sapiens. Then, we review statistical problems and limitations that affect the calculation of particular population genetic parameters for these microbes, such as mutation rates, with particular emphasis on the effects of recombination, selection and mode of transmission. Finally, we extend the discussion to other host–parasite systems and advocate the adoption of an integrative approach to both sampling and analysis.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Pleistocene desiccation in East Africa bottlenecked but did not extirpate the adaptive radiation of Lake Victoria haplochromine cichlid fishes

Kathryn R. Elmer; Chiara Reggio; Thierry Wirth; Erik Verheyen; Walter Salzburger; Axel Meyer

The Great Lakes region of East Africa, including Lake Victoria, is the center of diversity of the mega-diverse cichlid fishes (Perciformes: Teleostei). Paleolimnological evidence indicates dramatic desiccation of this lake ca. 18,000–15,000 years ago. Consequently, the hundreds of extant endemic haplochromine species in the lake must have either evolved since then or refugia must have existed, within that lake basin or elsewhere, from which Lake Victoria was recolonized. We studied the population history of the Lake Victoria region superflock (LVRS) of haplochromine cichlids based on nuclear genetic analysis (12 microsatellite loci from 400 haplochomines) of populations from Lake Kivu, Lake Victoria, and the connected and surrounding rivers and lakes. Population genetic analyses confirmed that Lake Kivu haplochromines colonized Lake Victoria. Coalescent analyses show a 30- to 50-fold decline in the haplochromine populations of Lake Victoria, Lake Kivu, and the region ca. 18,000–15,000 years ago. We suggest that this coincides with drastic climatic and geological changes in the late Pleistocene. The most recent common ancestor of the Lake Victoria region haplochromines was estimated to have existed about 4.5 million years ago, which corresponds to the first radiation of cichlids in Lake Tanganyika and the origin of the tribe Haplochrominii. This relatively old evolutionary origin may explain the high levels of polymorphism still found in modern haplochromines. This degree of polymorphism might have acted as a “genetic reservoir” that permitted the explosive radiation of hundreds of haplochromines and their array of contemporary adaptive morphologies.


Mbio | 2014

Origin and Evolution of European Community-Acquired Methicillin-Resistant Staphylococcus aureus

Marc Stegger; Thierry Wirth; Paal S. Andersen; Robert Skov; Anna De Grassi; Patricia Martins Simões; Anne Tristan; Andreas Petersen; Maliha Aziz; Kristoffer Kiil; Ivana Cirkovic; Edet E. Udo; Rosa del Campo; Jaana Vuopio-Varkila; Norazah Ahmad; Sima Tokajian; Georg Peters; Frieder Schaumburg; Barbro Olsson-Liljequist; Michael Givskov; Elizabeth E. Driebe; Henrik Vigh; Adebayo Shittu; Nadjia Ramdani-Bougessa; Jean-Philippe Rasigade; Lance B. Price; François Vandenesch; Anders Rhod Larsen; Frédéric Laurent

ABSTRACT Community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) was recognized in Europe and worldwide in the late 1990s. Within a decade, several genetically and geographically distinct CA-MRSA lineages carrying the small SCCmec type IV and V genetic elements and the Panton-Valentine leukocidin (PVL) emerged around the world. In Europe, the predominant CA-MRSA strain belongs to clonal complex 80 (CC80) and is resistant to kanamycin/amikacin and fusidic acid. CC80 was first reported in 1993 but was relatively rare until the late 1990s. It has since been identified throughout North Africa, the Middle East, and Europe, with recent sporadic reports in sub-Saharan Africa. While strongly associated with skin and soft tissue infections, it is rarely found among asymptomatic carriers. Methicillin-sensitive S. aureus (MSSA) CC80 strains are extremely rare except in sub-Saharan Africa. In the current study, we applied whole-genome sequencing to a global collection of both MSSA and MRSA CC80 isolates. Phylogenetic analyses strongly suggest that the European epidemic CA-MRSA lineage is derived from a PVL-positive MSSA ancestor from sub-Saharan Africa. Moreover, the tree topology suggests a single acquisition of both the SCCmec element and a plasmid encoding the fusidic acid resistance determinant. Four canonical SNPs distinguish the derived CA-MRSA lineage and include a nonsynonymous mutation in accessory gene regulator C (agrC). These changes were associated with a star-like expansion into Europe, the Middle East, and North Africa in the early 1990s, including multiple cases of cross-continent imports likely driven by human migrations. IMPORTANCE With increasing levels of CA-MRSA reported from most parts of the Western world, there is a great interest in understanding the origin and factors associated with the emergence of these epidemic lineages. To trace the origin, evolution, and dissemination pattern of the European CA-MRSA clone (CC80), we sequenced a global collection of strains of the S. aureus CC80 lineage. Our study determined that a single descendant of a PVL-positive methicillin-sensitive ancestor circulating in sub-Saharan Africa rose to become the dominant CA-MRSA clone in Europe, the Middle East, and North Africa. In the transition from a methicillin-susceptible lineage to a successful CA-MRSA clone, it simultaneously became resistant to fusidic acid, a widely used antibiotic for skin and soft tissue infections, thus demonstrating the importance of antibiotic selection in the success of this clone. This finding furthermore highlights the significance of horizontal gene acquisitions and underscores the combined importance of these factors for the success of CA-MRSA. With increasing levels of CA-MRSA reported from most parts of the Western world, there is a great interest in understanding the origin and factors associated with the emergence of these epidemic lineages. To trace the origin, evolution, and dissemination pattern of the European CA-MRSA clone (CC80), we sequenced a global collection of strains of the S. aureus CC80 lineage. Our study determined that a single descendant of a PVL-positive methicillin-sensitive ancestor circulating in sub-Saharan Africa rose to become the dominant CA-MRSA clone in Europe, the Middle East, and North Africa. In the transition from a methicillin-susceptible lineage to a successful CA-MRSA clone, it simultaneously became resistant to fusidic acid, a widely used antibiotic for skin and soft tissue infections, thus demonstrating the importance of antibiotic selection in the success of this clone. This finding furthermore highlights the significance of horizontal gene acquisitions and underscores the combined importance of these factors for the success of CA-MRSA.


Molecular Ecology | 2008

Population structure of the parasitic nematode Anguillicola crassus, an invader of declining North Atlantic eel stocks

Sébastien Wielgoss; Horst Taraschewski; Axel Meyer; Thierry Wirth

Probably half of all animal species exhibit a parasitic lifestyle and numerous parasites have recently expanded their distribution and host ranges due to anthropogenic activities. Here, we report on the population genetic structure of the invasive nematode Anguillicola crassus, a parasite in freshwater eels, which recently spread from Asia to Europe and North America. Samples were collected from the newly colonized naïve host species Anguilla anguilla (Europe) and Anguilla rostrata (North America), and from indigenous Anguilla japonica in Taiwan and Japan. Using seven microsatellite loci and one mitochondrial marker, we show that the parasites population structure in Europe mirrors the zoogeographic Boreal–Lusitanian break along the English Channel. Both the north‐to‐south decline of nuclear allelic diversity and the loss of private alleles in the same direction are consistent with a significant isolation‐by‐distance pattern based on ρST values. In combination with the specific topology of the distance tree among nematode populations, our data suggest that Europe was invaded only once from Taiwan, and that subsequently, genetic diversity was lost due to random drift. On the contrary, the North American sample shares distinct nuclear and mitochondrial signatures with Japanese specimens. We propose that the genetic structure in Europe was shaped by long‐range anthropogenic eel host transfers in the north and a single dispersal event into the southwest. The genetically distinct Brittany sample at the edge of the Boreal–Lusitanian boundary is indicative of natural dispersal of fish hosts since recruitment occurs naturally there and invertebrate host dissemination is interrupted due to oceanic currents.

Collaboration


Dive into the Thierry Wirth's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Axel Meyer

University of Konstanz

View shared research outputs
Top Co-Authors

Avatar

Maxime Barbier

École pratique des hautes études

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge