Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thilo Hofmann is active.

Publication


Featured researches published by Thilo Hofmann.


Toxicology | 2010

Algal testing of titanium dioxide nanoparticles—Testing considerations, inhibitory effects and modification of cadmium bioavailability

Nanna B. Hartmann; F. von der Kammer; Thilo Hofmann; Mohamed Baalousha; Stephanie Ottofuelling; Anders Baun

The ecotoxicity of three different sizes of titanium dioxide (TiO(2)) particles (primary particles sizes: 10, 30, and 300nm) to the freshwater green alga Pseudokirchneriella subcapitata was investigated in this study. Algal growth inhibition was found for all three particle types, but the physiological mode of action is not yet clear. It was possible to establish a concentration/dose-response relationship for the three particle sizes. Reproducibility, however, was affected by concentration-dependent aggregation of the nanoparticles, subsequent sedimentation, and possible attachment to vessel surfaces. It is also believed that heteroaggregation, driven by algal exopolymeric exudates, is occurring and could influence the concentration-response relationship. The ecotoxicity of cadmium to algae was investigated both in the presence and absence of 2mg/L TiO(2). The presence of TiO(2) in algal tests reduced the observed toxicity due to decreased bioavailability of cadmium resulting from sorption/complexation of Cd(2+) ions to the TiO(2) surface. However, for the 30nm TiO(2) nanoparticles, the observed growth inhibition was greater than what could be explained by the concentration of dissolved Cd(II) species, indicating a possible carrier effect, or combined toxic effect of TiO(2) nanoparticles and cadmium. These results emphasize the importance of systematic studies of nanoecotoxicological effects of different sizes of nanoparticles and underline the fact that, in addition to particle toxicity, potential interactions with existing environmental contaminants are also of crucial importance in assessing the potential environmental risks of nanoparticles.


Environmental Science & Technology | 2009

Nanostructured TiO2: Transport Behavior and Effects on Aquatic Microbial Communities under Environmental Conditions

Tom J. Battin; Frank von der Kammer; Andreas Weilhartner; Stephanie Ottofuelling; Thilo Hofmann

Industry has already commenced the large-scale production of some nanomaterials. Evidence for toxic effects of engineered nanoparticles (ENP) on model organisms is increasing. However, in order to assess the consequences of environmental hazards, a better understanding is required of the behavior of ENP in aquatic ecosystems and their impact on complex communities. In this research, through experimenting with different TiO(2) nanoparticles in stream microcosms, we have shown that microbial membranes were significantly compromised, even under ambient ultraviolet radiation and nano-TiO(2) concentrations predicted for surface waters. Our results suggest adverse effects are not necessarily only attributable to individual particles smaller than 100 nm but also to low concentrations of larger, naturally agglomerating TiO(2) nanoparticles. Cell membrane damage was more pronounced in free-living cells than in biofilm cells, indicating the protective role of cell encapsulation against TiO(2) nanoparticles. The generation of intracellular reactive oxygen species (ROS) further suggests nano-TiO(2)-induced effects inside the microbial cells. Our findings indicate a high sensitivity of microbial communities to levels of ENP concentration that are to be expected in the environment, with as yet unknown implications for the functioning and health of ecosystems.


Chemosphere | 2008

Characterization and source identification of polycyclic aromatic hydrocarbons (PAHs) in river bank soils

Carmen Pies; Burkhard Hoffmann; Jelena Petrowsky; Yi Yang; Thomas A. Ternes; Thilo Hofmann

Elevated PAH concentrations were detected in bank soils along the Mosel and Saar Rivers in Germany. Information on the identification of PAH sources in this area however remains unclear. This study was able to characterize the PAH sources by application of several approaches, including consideration of the distribution patterns of 45 PAHs (including 16 EPA PAHs and some alkyl PAHs), specific PAH ratios, distribution patterns of n-alkanes and principal component analysis (PCA). In addition, the efficiency of the tested approaches was assessed. The results from the application of the various source identification methods showed that pyrogenic PAHs dominate soil samples collected upstream of the confluence of the Mosel and Saar Rivers, and petrogenic and pyrogenic PAHs dominate samples downstream of the confluence. Based on the analysis of reference materials and organic petrography, the petrogenic input was found to be dominated by coal particles. More detailed information on the petrogenic sources was provided by the n-alkane analyses. The current study concludes that to accurately determine the origin of PAHs, several identification methods must be applied.


Environment International | 2014

Nanopesticide research: Current trends and future priorities

Melanie Kah; Thilo Hofmann

The rapid developments in nanopesticide research over the last two years have motivated a number of international organizations to consider potential issues relating to the use of nanotechnology for crop protection. This analysis of the latest research trends provides a useful basis for identifying research gaps and future priorities. Polymer-based formulations have received the greatest attention over the last two years, followed by formulations containing inorganic nanoparticles (e.g., silica, titanium dioxide) and nanoemulsions. Investigations have addressed the lack of information on the efficacy of nanopesticides and a number of products have been demonstrated to have greater efficacy than their commercial counterparts. However, the mechanisms involved remain largely unknown and further research is required before any generalizations can be made. There is now increased motivation to develop nanopesticides that are less harmful to the environment than conventional formulations, and future investigations will need to assess whether any promising products developed are able to compete with existing formulations, in terms of both cost and performance. Investigations into the environmental fate of nanopesticides remain scarce, and the current state of knowledge does not appear to be sufficient for a reliable assessment to be made of their associated benefits and risks. A great deal of research will therefore be required over the coming years, and will need to include (i) the development of experimental protocols to generate reliable fate properties, (ii) investigations into the bioavailability and durability of nanopesticides, and (iii) evaluation of current environmental risk assessment approaches, and their refinement where appropriate.


Environmental Science & Technology | 2014

Release of TiO2 nanoparticles from sunscreens into surface waters: a one-year survey at the old Danube recreational Lake.

Andreas P. Gondikas; Frank von der Kammer; Robert B. Reed; Stephan Wagner; James F. Ranville; Thilo Hofmann

Monitoring data are necessary for the future production of engineered nanomaterials and the development of regulations for nanomaterials. Therefore, it is necessary to develop methods that reliably detect and quantify nanomaterials in real-world systems at expectedly low concentrations. In this work we tested several methodological approaches to detect titanium dioxide nanomaterials released from sunscreen products into the Old Danube Lake (Vienna, Austria), which is heavily used for recreational activities like bathing and water sports during the summer season. During a 12-month period suspended particulate matter (SPM) was collected from the lake and analyzed using a combination of complementary techniques. By sampling at a location approximately 50 m from the nearest bathing area and at one meter depth from the water surface, we focused on the potentially mobile fraction of the released nanoparticles. We were able to identify titanium dioxide nanoparticles stemming from sunscreens in the suspended matter of the lake using electron microscopy. Bulk analysis of SPM clearly shows an increase of Ti-containing particles during the summer season. These analyses, however, are not able to distinguish sunscreen nanoparticles from natural Ti-bearing nanoparticles. Therefore, Elemental ratios of Ti with Al, V, Ga, Y, Nb, Eu, Ho, Er, Tm, Yb, and Ta as determined by ICPMS and ICPOES, in combination with single particle ICPMS analysis were applied to establish local background values. The observed mild increase of Ti elemental ratios, compared to spring background values indicates that the residence time of released nanomaterials in the water column is rather short. Overall, the advantages and disadvantages of the methods used to detect and characterize the nanomaterials are discussed.


Environmental Science & Technology | 2011

Commercial Titanium Dioxide Nanoparticles in Both Natural and Synthetic Water: Comprehensive Multidimensional Testing and Prediction of Aggregation Behavior

Stephanie Ottofuelling; Frank von der Kammer; Thilo Hofmann

Engineered nanoparticles (ENPs) from industrial applications and consumer products are already being released into the environment. Their distribution within the environment is, among other factors, determined by the dispersion state and aggregation behavior of the nanoparticles and, in turn, directly affects the exposure of aquatic organisms to EPNs. The aggregation behavior (or colloidal stability) of these particles is controlled by the water chemistry and, to a large extent, by the surface chemistry of the particles. This paper presents results from extensive colloidal stability tests on commercially relevant titanium dioxide nanoparticles (Evonik P25) in well-controlled synthetic waters covering a wide range of pH values and water chemistries, and also in standard synthetic (EPA) waters and natural waters. The results demonstrate in detail the dependency of TiO(2) aggregation on the ionic strength of the solution, the presence of relevant monovalent and divalent ions, the presence and copresence of natural organic matter (NOM), and of course the pH of the solution. Specific interactions of both NOM and divalent ions with the TiO(2) surfaces modify the chemistry of these surfaces resulting in unexpected behavior. Results from matrix testing in well-controlled batch systems allow predictions to be made on the behavior in the broader natural environment. Our study provides the basis for a testing scheme and data treatment technique to extrapolate and eventually predict nanoparticle behavior in a wide variety of natural waters.


Critical Reviews in Environmental Science and Technology | 2013

Nanopesticides: State of Knowledge, Environmental Fate, and Exposure Modeling

Melanie Kah; Sabine Beulke; Karen Tiede; Thilo Hofmann

Published literature has been reviewed in order to (a) explore the (potential) applications of nanotechnology in pesticide formulation, (b) identify possible impacts on environmental fate, and (c) analyze the suitability of current exposure assessment procedures to account for the novel properties of nanopesticides within the EU regulatory context. The term nanopesticide covers a wide variety of products and cannot be considered to represent a single category. Many nanoformulations combine several surfactants, polymers, and metal nanoparticles in the nanometer size range. The aims of nanoformulations are generally common to other pesticide formulations, these being to increase the apparent solubility of poorly soluble active ingredients, to release the active ingredient in a slow/targeted manner and/or to protect against premature degradation. Nanoformulations are thus expected to (a) have significant impacts on the fate of active ingredients and/or (b) introduce new ingredients for which the environmental fate is still poorly understood (e.g., nanosilver). Therefore, it seems that adaptations of current exposure assessment approaches will be necessary, at least for some nanopesticides. The present analysis provides a useful framework to identify priorities for future research in order to achieve more robust risk assessments of nanopesticides.


Science of The Total Environment | 2009

Native polycyclic aromatic hydrocarbons (PAH) in coals - A hardly recognized source of environmental contamination

Christine Achten; Thilo Hofmann

Numerous environmental polycyclic aromatic hydrocarbon (PAH) sources have been reported in literature, however, unburnt hard coal/ bituminous coal is considered only rarely. It can carry native PAH concentrations up to hundreds, in some cases, thousands of mg/kg. The molecular structures of extractable compounds from hard coals consist mostly of 2-6 polyaromatic condensed rings, linked by ether or methylene bridges carrying methyl and phenol side chains. The extractable phase may be released to the aquatic environment, be available to organisms, and thus be an important PAH source. PAH concentrations and patterns in coals depend on the original organic matter type, as well as temperature and pressure conditions during coalification. The environmental impact of native unburnt coal-bound PAH in soils and sediments is not well studied, and an exact source apportionment is hardly possible. In this paper, we review the current state of the art.


Environmental Pollution | 2009

Estimating the relevance of engineered carbonaceous nanoparticle facilitated transport of hydrophobic organic contaminants in porous media

Thilo Hofmann; Frank von der Kammer

Naturally occurring nanoparticles (NP) enhance the transport of hydrophobic organic contaminants (HOCs) in porous media. In addition, the debate on the environmental impact of engineered nanoparticles (ENP) has become increasingly important. HOC bind strongly to carbonaceous ENP. Thus, carbonaceous ENP may also act as carriers for contaminant transport and might be important when compared to existing transport processes. ENP bound transport is strongly linked to the sorption behavior, and other carbonaceous ENP-specific properties. In our analysis the HOC-ENP sorption mechanism, as well as ENP size and ENP residence time, was of major importance. Our results show that depending on ENP size, sorption kinetics and residence time in the system, the ENP bound transport can be estimated either as (1) negligible, (2) enhancing contaminant transport, or (3) should be assessed by reactive transport modeling. One major challenge to this field is the current lack of data for HOC-ENP desorption kinetics.


Environmental Pollution | 2010

Assessment of the physico-chemical behavior of titanium dioxide nanoparticles in aquatic environments using multi-dimensional parameter testing

Frank von der Kammer; Stephanie Ottofuelling; Thilo Hofmann

Assessment of the behavior and fate of engineered nanoparticles (ENPs) in natural aquatic media is crucial for the identification of environmentally critical properties of the ENPs. Here we present a methodology for testing the dispersion stability, ζ-potential and particle size of engineered nanoparticles as a function of pH and water composition. The results obtained from already widely used titanium dioxide nanoparticles (Evonik P25 and Hombikat UV-100) serve as a proof-of-concept for the proposed testing scheme. In most cases the behavior of the particles in the tested settings follows the expectations derived from classical DLVO theory for metal oxide particles with variable charge and an isoelectric point at around pH 5, but deviations also occur. Regardless of a 5-fold difference in BET specific surface area particles composed of the same core material behave in an overall comparable manner. The presented methodology can act as a basis for the development of standardised methods for comparing the behavior of different nanoparticles within aquatic systems.

Collaboration


Dive into the Thilo Hofmann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yi Yang

East China Normal University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge