Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thilo Stehle is active.

Publication


Featured researches published by Thilo Stehle.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Structural basis of GM1 ganglioside recognition by simian virus 40

Ursula Neu; Karin Woellner; Guenter Gauglitz; Thilo Stehle

Simian virus 40 (SV40) has been a paradigm for understanding attachment and entry of nonenveloped viruses, viral DNA replication, and virus assembly, as well as for endocytosis pathways associated with caveolin and cholesterol. We find by glycan array screening that SV40 recognizes its ganglioside receptor GM1 with a quite narrow specificity, but isothermal titration calorimetry shows that individual binding sites have a relatively low affinity, with a millimolar dissociation constant. The high-resolution crystal structure of recombinantly produced SV40 capsid protein, VP1, in complex with the carbohydrate portion of GM1, reveals that the receptor is bound in a shallow solvent-exposed groove at the outer surface of the capsid. Through a complex network of interactions, VP1 recognizes a conformation of GM1 that is the dominant one in solution. Analysis of contacts provides a structural basis for the observed specificity and suggests binding mechanisms for additional physiologically relevant GM1 variants. Comparison with murine Polyomavirus (Polyoma) receptor complexes reveals that SV40 uses a different mechanism of sialic acid binding, which has implications for receptor binding of human polyomaviruses. The SV40–GM1 complex reveals a parallel to cholera toxin, which uses a similar cell entry pathway and binds GM1 in the same conformation.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Crystal structure of human junctional adhesion molecule 1: Implications for reovirus binding

Andrea E. Prota; Jacquelyn A. Campbell; Pierre Schelling; J. C. Forrest; M. J. Watson; T. R. Peters; Michel Aurrand-Lions; Beat A. Imhof; Terence S. Dermody; Thilo Stehle

Reovirus attachment to cells is mediated by the binding of viral attachment protein σ1 to junctional adhesion molecule 1 (JAM1). The crystal structure of the extracellular region of human JAM1 (hJAM1) reveals two concatenated Ig-type domains with a pronounced bend at the domain interface. Two hJAM1 molecules form a dimer that is stabilized by extensive ionic and hydrophobic contacts between the N-terminal domains. This dimeric arrangement is similar to that observed previously in the murine homolog of JAM1, indicating physiologic relevance. However, differences in the dimeric structures of hJAM1 and murine JAM1 suggest that the interface is dynamic, perhaps as a result of its ionic nature. We demonstrate that hJAM1, but not the related proteins hJAM2 and hJAM3, serves as a reovirus receptor, which provides insight into sites in hJAM1 that likely interact with σ1. In addition, we present evidence that the previously reported structural homology between σ1 and the adenovirus attachment protein, fiber, also extends to their respective receptors, which form similar dimeric structures. Because both receptors are located at regions of cell–cell contact, this similarity suggests that reovirus and adenovirus use conserved mechanisms of entry and pathways of infection.


Nature Methods | 2012

In vivo protein crystallization opens new routes in structural biology

Rudolf Koopmann; Karolina Cupelli; Karol Nass; Daniel P. DePonte; Thomas A. White; Francesco Stellato; Dirk Rehders; Mengning Liang; Jakob Andreasson; Andrew Aquila; Sasa Bajt; Miriam Barthelmess; Anton Barty; Michael J. Bogan; Christoph Bostedt; Sébastien Boutet; John D. Bozek; Carl Caleman; Nicola Coppola; Jan Davidsson; R. Bruce Doak; Tomas Ekeberg; Sascha W. Epp; Benjamin Erk; Holger Fleckenstein; Lutz Foucar; Heinz Graafsma; Lars Gumprecht; J. Hajdu; Christina Y. Hampton

Protein crystallization in cells has been observed several times in nature. However, owing to their small size these crystals have not yet been used for X-ray crystallographic analysis. We prepared nano-sized in vivo–grown crystals of Trypanosoma brucei enzymes and applied the emerging method of free-electron laser-based serial femtosecond crystallography to record interpretable diffraction data. This combined approach will open new opportunities in structural systems biology.


Proceedings of the National Academy of Sciences of the United States of America | 2009

The structure of dimethylallyl tryptophan synthase reveals a common architecture of aromatic prenyltransferases in fungi and bacteria

Ute Metzger; Christoph Schall; Georg Zocher; Inge Unsöld; Edyta Stec; Shu-Ming Li; Lutz Heide; Thilo Stehle

Ergot alkaloids are toxins and important pharmaceuticals that are produced biotechnologically on an industrial scale. The first committed step of ergot alkaloid biosynthesis is catalyzed by dimethylallyl tryptophan synthase (DMATS; EC 2.5.1.34). Orthologs of DMATS are found in many fungal genomes. We report here the x-ray structure of DMATS, determined at a resolution of 1.76 Å. A complex of DMATS from Aspergillus fumigatus with its aromatic substrate L-tryptophan and with an analogue of its isoprenoid substrate dimethylallyl diphosphate reveals the structural basis of this enzyme-catalyzed Friedel-Crafts reaction, which shows strict regiospecificity for position 4 of the indole nucleus of tryptophan as well as unusual independence of the presence of Mg2+ ions. The 3D structure of DMATS belongs to a rare β/α barrel fold, called prenyltransferase barrel, that was recently discovered in a small group of bacterial enzymes with no sequence similarity to DMATS. These bacterial enzymes catalyze the prenylation of aromatic substrates in the biosynthesis of secondary metabolites (i.e., a reaction similar to that of DMATS).


Nature Medicine | 2011

The GD1a glycan is a cellular receptor for adenoviruses causing epidemic keratoconjunctivitis

Emma Nilsson; Rickard J Storm; Johannes Bauer; Susanne M. C. Johansson; Aivar Lookene; Jonas Ångström; Mattias Hedenström; Therese Eriksson; Lars Frängsmyr; Simon Rinaldi; Hugh J. Willison; Fatima Pedrosa Domellöf; Thilo Stehle; Niklas Arnberg

Adenovirus type 37 (Ad37) is a leading cause of epidemic keratoconjunctivitis (EKC), a severe and highly contagious ocular disease. Whereas most other adenoviruses infect cells by engaging CD46 or the coxsackie and adenovirus receptor (CAR), Ad37 binds previously unknown sialic acid–containing cell surface molecules. By glycan array screening, we show here that the receptor-recognizing knob domain of the Ad37 fiber protein specifically binds a branched hexasaccharide that is present in the GD1a ganglioside and that features two terminal sialic acids. Soluble GD1a glycan and GD1a-binding antibodies efficiently prevented Ad37 virions from binding and infecting corneal cells. Unexpectedly, the receptor is constituted by one or more glycoproteins containing the GD1a glycan motif rather than the ganglioside itself, as shown by binding, infection and flow cytometry experiments. Molecular modeling, nuclear magnetic resonance and X-ray crystallography reveal that the two terminal sialic acids dock into two of three previously established sialic acid–binding sites in the trimeric Ad37 knob. Surface plasmon resonance analysis shows that the knob–GD1a glycan interaction has high affinity. Our findings therefore form a basis for the design and development of sialic acid–containing antiviral drugs for topical treatment of EKC.


Nature Chemical Biology | 2015

Structural basis for sialic acid–mediated self-recognition by complement factor H

Baerbel S. Blaum; Jonathan P. Hannan; Andrew P. Herbert; David J. Kavanagh; Dušan Uhrín; Thilo Stehle

The serum protein complement factor H (FH) ensures downregulation of the complement alternative pathway, a branch of innate immunity, upon interaction with specific glycans on host cell surfaces. Using ligand-based NMR, we screened a comprehensive set of sialylated glycans for binding to FH and solved the crystal structure of a ternary complex formed by the two C-terminal domains of FH, a sialylated trisaccharide and the complement C3b thioester-containing domain. Key residues in the sialic acid binding site are conserved from mice to men, and residues linked to atypical hemolytic uremic syndrome cluster within this binding site, suggesting a possible role for sialic acid as a host marker also in other mammals and a critical role in human renal complement homeostasis. Unexpectedly, the FH sialic acid binding site is structurally homologous to the binding sites of two evolutionarily unrelated proteins. The crystal structure also advances our understanding of bacterial immune evasion strategies.


Journal of Molecular Biology | 1992

Refined structure of the complex between guanylate kinase and its substrate GMP at 2.0 A resolution.

Thilo Stehle; Georg E. Schulz

The crystal structure of guanylate kinase from Saccharomyces cerevisiae complexed with its substrate GMP has been refined at a resolution of 2.0 A. The final crystallographic R-factor is 17.3% in the resolution range 7.0 A to 2.0 A for all reflections of the 100% complete data set. The final model has standard geometry with root-mean-square deviations of 0.016 A in bond lengths and 3.0 in bond angles. It consists of all 186 amino acid residues, the N-terminal acetyl group, the substrate GMP, one sulfate ion and 174 water molecules. Guanylate kinase is structurally related to adenylate kinases and G-proteins with respect to its central beta-sheet with connecting helices and the giant anion hole that binds nucleoside triphosphates. These nucleotides are ATP and GTP for the kinases and GTP for the G-proteins. The chain segment binding the substrate GMP of guanylate kinase differs grossly from the respective part of the adenylate kinases; it has no counterpart in the G-proteins. The binding mode of GMP is described in detail. Probably, the observed structure represents one of several structurally quite different intermediate states of the catalytic cycle.


Nature Structural & Molecular Biology | 2010

Structure of the measles virus hemagglutinin bound to the CD46 receptor

César Santiago; María Luisa Celma; Thilo Stehle; José M. Casasnovas

The highly contagious measles virus infects millions of individuals worldwide, causing serious disease in children of developing countries. Infection is initiated by attachment of the measles virus hemagglutinin (MV-H), a glycoprotein anchored to the virus envelope, to the host cell receptors CD46 or signaling lymphocyte activation molecule (SLAM). Here we report the crystal structure of MV-H in complex with a CD46 protein spanning the two N-terminal domains. A unique groove at the side of the MV-H β-propeller domain, which is absent in homologous paramyxovirus attachment proteins, engages residues in both CD46 domains. Key contacts involve a protruding loop in the N-terminal CD46 domain that carries two sequential proline residues (PP motif) and penetrates deeply into a hydrophobic socket in MV-H. We identify a similar PP motif in SLAM, defining a common measles virus recognition epitope in the CD46 and SLAM receptor proteins.


Journal of Biological Chemistry | 2009

Oxidizable Residues Mediating Protein Stability and Cytoprotective Interaction of DJ-1 with Apoptosis Signal-regulating Kinase 1

Jens Waak; Stephanie S. Weber; Karin Görner; Christoph Schall; Hidenori Ichijo; Thilo Stehle; Philipp J. Kahle

Parkinson disease (PD)-associated genomic deletions and the destabilizing L166P point mutation lead to loss of the cytoprotective DJ-1 protein. The effects of other PD-associated point mutations are less clear. Here we demonstrate that the M26I mutation reduces DJ-1 expression, particularly in a null background (knockout mouse embryonic fibroblasts). Thus, homozygous M26I mutation causes loss of DJ-1 protein. To determine the cellular consequences, we measured suppression of apoptosis signal-regulating kinase 1 (ASK1) and cytotoxicity for [M26I]DJ-1, and systematically all other DJ-1 methionine and cysteine mutants. C106A mutation of the central redox site specifically abolished binding to ASK1 and the cytoprotective activity of DJ-1. DJ-1 was apparently recruited into the ASK1 signalosome via Cys-106-linked mixed disulfides. The designed higher order oxidation mimicking [C106DD]DJ-1 non-covalently bound to ASK1 even in the absence of hydrogen peroxide and conferred partial cytoprotection. Interestingly, mutations of peripheral redox sites (C46A and C53A) and M26I also led to constitutive ASK1 binding. Cytoprotective [wt]DJ-1 bound to the ASK1 N terminus (which is known to bind another negative regulator, thioredoxin 1), whereas [M26I]DJ-1 bound to aberrant C-terminal site(s). Consequently, the peripheral cysteine mutants retained cytoprotective activity, whereas the PD-associated mutant [M26I]DJ-1 failed to suppress ASK1 activity and nuclear export of the death domain-associated protein Daxx and did not promote cytoprotection. Thus, cytoprotective binding of DJ-1 to ASK1 depends on the central redox-sensitive Cys-106 and may be modulated by peripheral cysteine residues. We suggest that impairments in oxidative conformation changes of DJ-1 might contribute to PD neurodegeneration.


Nature Reviews Microbiology | 2014

The sweet spot: defining virus-sialic acid interactions

Jennifer E. Stencel-Baerenwald; Kerstin Reiss; Dirk M. Reiter; Thilo Stehle; Terence S. Dermody

Viral infections are initiated by attachment of the virus to host cell surface receptors, including sialic acid-containing glycans. It is now possible to rapidly identify specific glycan receptors using glycan array screening, to define atomic-level structures of virus–glycan complexes and to alter the glycan-binding site to determine the function of glycan engagement in viral disease. This Review highlights general principles of virus–glycan interactions and provides specific examples of sialic acid binding by viruses with stalk-like attachment proteins, including influenza virus, reovirus, adenovirus and rotavirus. Understanding virus–glycan interactions is essential to combating viral infections and designing improved viral vectors for therapeutic applications.

Collaboration


Dive into the Thilo Stehle's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Georg Zocher

University of Tübingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ten Feizi

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge