Thirumahal Selvanantham
University of Toronto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Thirumahal Selvanantham.
Journal of Immunology | 2008
Joao G. Magalhaes; Jörg Fritz; Lionel Le Bourhis; Gernot Sellge; Leonardo H. Travassos; Thirumahal Selvanantham; Stephen E. Girardin; Jennifer L. Gommerman; Dana J. Philpott
While a number of microbial-associated molecular patterns have been known for decades to act as adjuvants, the mechanisms and the signaling pathways underlying their action have remained elusive. Here, we examined the unfolding of the adaptive immune response induced by Nod2 in vivo upon activation by its specific ligand, muramyl dipeptide, a component of peptidoglycan. Our findings demonstrate that this bacterial sensor triggers a potent Ag-specific immune response with a Th2-type polarization profile, characterized by the induction of IL-4 and IL-5 by T cells and IgG1 Ab responses. Nod2 was also found to be critical for the induction of both Th1- and Th2-type responses following costimulation with TLR agonists. Importantly, the synergistic responses to Nod2 and TLR agonists seen in vivo were recapitulated by dendritic cells in vitro, suggesting that these cells likely play a central role in the integration of Nod2- and TLR-dependent signals for driving the adaptive immune response. Taken together, our results identify Nod2 as a critical mediator of microbial-induced potentiation and polarization of Ag-dependent immunity. Moreover, these findings affect our understanding of Crohn’s diseases pathogenesis, where lack of Nod2-dependent Th2 signaling in a subset of these patients might explain heightened Th1-mediated inflammation at the level of the intestinal mucosa.
Infection and Immunity | 2010
Kaoru Geddes; Stephen Rubino; Catherine Streutker; Joon Ho Cho; Joao G. Magalhaes; Lionel Le Bourhis; Thirumahal Selvanantham; Stephen E. Girardin; Dana J. Philpott
ABSTRACT The pattern recognition molecules Nod1 and Nod2 play important roles in intestinal homeostasis; however, how these proteins impact on the development of inflammation during bacterial colitis has not been examined. In the streptomycin-treated mouse model of Salmonella colitis, we found that mice deficient for both Nod1 and Nod2 had attenuated inflammatory pathology, reduced levels of inflammatory cytokines, and increased colonization of the mucosal tissue. Nod1 and Nod2 from both hematopoietic and nonhematopoietic sources contributed to the pathology, and all phenotypes were recapitulated in mice deficient for the signaling adaptor protein Rip2. However, the influence of Rip2 was strictly dependent on infection conditions that favored expression of the Salmonella pathogenicity island 2 (SPI-2) type III secretion system (TTSS), as Rip2 was dispensable for inflammation when mice were infected with bacteria grown under conditions that promoted expression of the SPI-1 TTSS. Thus, Nod1 and Nod2 can modulate inflammation and mediate efficient clearance of bacteria from the mucosal tissue during Salmonella colitis, but their role is dependent on the expression of the SPI-2 TTSS.
Current Opinion in Immunology | 2012
Stephen Rubino; Thirumahal Selvanantham; Stephen E. Girardin; Dana J. Philpott
The Nod-like receptor (NLR) family of intracellular pattern recognition molecules plays critical roles in the control of inflammation through the modulation of different signalling pathways, including those dependent on NF-κB and caspase-1-mediated cleavage of interleukin (IL)-1β and IL-18. A number of NLRs or NLR-associated proteins have been genetically associated with susceptibility to inflammatory bowel disease (IBD), either Crohns disease or ulcerative colitis. Accordingly, recent studies have examined the role of NLR proteins in chemical-induced or bacteria-induced murine models of colitis. In this review, we will discuss the genetic associations of NLRs with IBD and the research using NLR-deficient mice in different colitis models.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Joao G. Magalhaes; Stephen Rubino; Leonardo H. Travassos; Lionel Le Bourhis; Wei Duan; Gernot Sellge; Kaoru Geddes; Colin Reardon; Matthias Lechmann; Leticia A. Carneiro; Thirumahal Selvanantham; Jörg H. Fritz; Betsy C. Taylor; David Artis; Tak W. Mak; Michael R. Comeau; Michael Croft; Stephen E. Girardin; Dana J. Philpott
Although a number of studies have examined the development of T-helper cell type 2 (Th2) immunity in different settings, the mechanisms underlying the initiation of this arm of adaptive immunity are not well understood. We exploited the fact that immunization with antigen plus either nucleotide-binding oligomerization domain-containing proteins 1 (Nod1) or 2 (Nod2) agonists drives Th2 induction to understand how these pattern-recognition receptors mediate the development of systemic Th2 immune responses. Here, we show in bone-marrow chimeric mice that Nod1 and Nod2 expression within the stromal compartment is necessary for priming of effector CD4+ Th2 responses and specific IgG1 antibodies. In contrast, sensing of these ligands by dendritic cells was not sufficient to induce Th2 immunity, although these cells contribute to the response. Moreover, we determined that CD11c+ cells were the critical antigen-presenting cells, whereas basophils and B cells did not affect the capacity of Nod ligands to induce CD4+ Th2 effector function. Finally, we found that full Th2 induction upon Nod1 and Nod2 activation was dependent on both thymic stromal lymphopoietin production by the stromal cells and the up-regulation of the costimulatory molecule, OX40 ligand, on dendritic cells. This study provides in vivo evidence of how systemic Th2 immunity is induced in the context of Nod stimulation. Such understanding will influence the rational design of therapeutics that could reprogram the immune system during an active Th1–mediated disease, such as Crohns disease.
Infection and Immunity | 2009
Lionel Le Bourhis; Joao G. Magalhaes; Thirumahal Selvanantham; Leonardo H. Travassos; Kaoru Geddes; Jörg Fritz; Jérôme Viala; Karsten Tedin; Stephen E. Girardin; Dana J. Philpott
Recent advances in immunology have highlighted the critical function of pattern-recognition molecules (PRMs) in generating the innate immune response to effectively target pathogens. Nod1 and Nod2 are intracellular PRMs that detect peptidoglycan motifs from the cell walls of bacteria once they gain access to the cytosol. Salmonella enterica serovar Typhimurium is an enteric intracellular pathogen that causes a severe disease in the mouse model. This pathogen resides within vacuoles inside the cell, but the question of whether cytosolic PRMs such as Nod1 and Nod2 could have an impact on the course of S. Typhimurium infection in vivo has not been addressed. Here, we show that deficiency in the PRM Nod1, but not Nod2, resulted in increased susceptibility toward a mutant strain of S. Typhimurium that targets directly lamina propria dendritic cells (DCs) for its entry into the host. Using this bacterium and bone marrow chimeras, we uncovered a surprising role for Nod1 in myeloid cells controlling bacterial infection at the level of the intestinal lamina propria. Indeed, DCs deficient for Nod1 exhibited impaired clearance of the bacteria, both in vitro and in vivo, leading to increased organ colonization and decreased host survival after oral infection. Taken together, these findings demonstrate a key role for Nod1 in the host response to an enteric bacterial pathogen through the modulation of intestinal lamina propria DCs.
Diabetes | 2008
Hubert Tsui; Yin Chan; Lan Tang; Shawn Winer; Roy K. Cheung; Geoffrey Paltser; Thirumahal Selvanantham; Alisha R. Elford; James Ellis; Dorothy J. Becker; Pamela S. Ohashi; Hans-Michael Dosch
OBJECTIVE— Type 1 diabetes reflects autoimmune destruction of β-cells and peri-islet Schwann cells (pSCs), but the mechanisms of pSC death and the T-cell epitopes involved remain unclear. RESEARCH DESIGN AND METHODS— Primary pSC cultures were generated and used as targets in cytotoxic T-lymphocyte (CTL) assays in NOD mice. Cognate interaction between pSC and CD8+ T-cells was assessed by transgenic restoration of β2-microglobulin (β2m) to pSC in NOD.β2m−/− congenics. I-Ag7 and Kd epitopes in the pSC antigen glial fibrillary acidic protein (GFAP) were identified by peptide mapping or algorithms, respectively, and the latter tested by immunotherapy. RESULTS— pSC cultures did not express major histocompatibility complex (MHC) class II and were lysed by ex vivo CTLs from diabetic NOD mice. In vivo, restoration of MHC class I in GFAP-β2m transgenics significantly accelerated adoptively transferred diabetes. Target epitopes in the pSC autoantigen GFAP were mapped to residues 79–87 and 253–261 for Kd and 96–110, 116–130, and 216–230 for I-Ag7. These peptides were recognized spontaneously in NOD spleens as early as 2.5 weeks of age, with proliferative responses peaking around weaning and detectable lifelong. Several were also recognized by T-cells from new-onset type 1 diabetic patients. NOD mouse immunotherapy at 8 weeks with the CD8+ T-cell epitope, GFAP 79–87 but not 253–261, significantly inhibited type 1 diabetes and was associated with reduced γ-interferon production to whole protein GFAP. CONCLUSIONS— Collectively, these findings elucidate a role for pSC-specific CD8+ T-cells in islet inflammation and type 1 diabetes pathogenesis, further supporting neuronal involvement in β-cell demise.
Journal of Immunology | 2013
Thirumahal Selvanantham; Nichole K. Escalante; Mayra Cruz Tleugabulova; Stephanie Fieve; Stephen E. Girardin; Dana J. Philpott; Thierry Mallevaey
Invariant NKT (iNKT) cells act at the crossroad between innate and adaptive immunity and are important players in the defense against microbial pathogens. iNKT cells can detect pathogens that trigger innate receptors (e.g., TLRs, Rig-I, Dectin-1) within APCs, with the consequential induction of CD1d-mediated Ag presentation and release of proinflammatory cytokines. We show that the cytosolic peptidoglycan-sensing receptors Nod1 and Nod2 are necessary for optimal IFN-γ production by iNKT cells, as well as NK cells. In the absence of Nod1 and Nod2, iNKT cells had a blunted IFN-γ response following infection by Salmonella enterica serovar Typhimurium and Listeria monocytogenes. For Gram-negative bacteria, we reveal a synergy between Nod1/2 and TLR4 in dendritic cells that potentiates IL-12 production and, ultimately, activates iNKT cells. These findings suggest that multiple innate pathways can cooperate to regulate iNKT cell activation during bacterial infection.
Immunology | 2012
Thierry Mallevaey; Thirumahal Selvanantham
Invariant natural killer T (iNKT) cells are evolutionarily conserved lipid‐reactive T cells that bridge innate and adaptive immune responses. Despite a relatively restricted T‐cell receptor (TCR) diversity, these cells respond to a variety of structurally distinct foreign (i.e. microbial or synthetic) as well as host‐derived (self‐) lipid antigens presented by the CD1d molecule. These multi‐tasking lymphocytes are among the first responders in immunity, and produce an impressive array of cytokines and chemokines that can tailor the ensuing immune response. Accordingly, iNKT cells play important functions in autoimmune diseases, cancer, infection and inflammation. These properties make iNKT cells appealing targets in immune‐based therapies. Yet, much has to be learned on the mechanisms that allow iNKT cells to produce polarized responses. Responses of iNKT cells are influenced by the direct signals perceived by the cells through their TCRs, as well as by indirect co‐stimulatory (and potentially co‐inhibitory) cues that they receive from antigen‐presenting cells or the local milieu. A decade ago, biochemists and immunologists have started to describe synthetic lipid agonists with cytokine skewing potential, paving a new research avenue in the iNKT cell field. Yet how iNKT cells translate various antigenic signals into distinct functional responses has remained obscure. Recent findings have revealed a unique and innate mode of lipid recognition by iNKT cells, and suggest that both the lipid antigen presented and the diversity of the TCR modulate the strength of CD1d‐iNKT TCR interactions. In this review, we focus on novel discoveries on lipid recognition by iNKT cells, and how these findings may help us to design effective strategies to steer iNKT cell responses for immune intervention.
Journal of Immunology | 2016
Thirumahal Selvanantham; Qiaochu Lin; Cynthia X. Guo; Anuradha Surendra; Stephanie Fieve; Nichole K. Escalante; David S. Guttman; Catherine Streutker; Susan J. Robertson; Dana J. Philpott; Thierry Mallevaey
NKT cells are unconventional T cells that respond to self and microbe-derived lipid and glycolipid Ags presented by the CD1d molecule. Invariant NKT (iNKT) cells influence immune responses in numerous diseases. Although only a few studies have examined their role during intestinal inflammation, it appears that iNKT cells protect from Th1-mediated inflammation but exacerbate Th2-mediated inflammation. Studies using iNKT cell–deficient mice and chemically induced dextran sodium sulfate (DSS) colitis have led to inconsistent results. In this study, we show that CD1d-deficient mice, which lack all NKT cells, harbor an altered intestinal microbiota that is associated with exacerbated intestinal inflammation at steady-state and following DSS treatment. This altered microbiota, characterized by increased abundance of the bacterial phyla Proteobacteria, Deferribacteres, and TM7, among which the mucin-eating Mucispirillum, as well as members of the genus Prevotella and segmented filamentous bacteria, was transmissible upon fecal transplant, along with the procolitogenic phenotype. Our results also demonstrate that this proinflammatory microbiota influences iNKT cell function upon activation during DSS colitis. Collectively, alterations of the microbiota have a major influence on colitis outcome and therefore have to be accounted for in such experimental settings and in studies focusing on iNKT cells.
Journal of Immunology | 2015
Monan Angela Zhang; Jeeyoon Jennifer Ahn; Fei Linda Zhao; Thirumahal Selvanantham; Thierry Mallevaey; Nick Stock; Lucia Correa; Ryan Clark; David Spaner; Shannon E. Dunn
Females exhibit more robust Th1 responses than males. Our previous work suggested that this sex disparity is a consequence of higher activity of the androgen-induced gene peroxisome proliferator–activated receptor α (PPARα) in male CD4+ T cells. The objective of this study was to elucidate the cellular and molecular mechanism of how PPARα inhibits Th1 responses in male mice. In this study, we found that PPARα functions within CD4+ and CD8+ T lymphocytes and NKT cells to negatively regulate IFN-γ responses in male mice and identified Ifng as the gene target of PPARα repression. Treatment of male CD4+ T cells with the PPARα agonist fenofibrate induced the recruitment of PPARα and the nuclear receptor-interacting protein, nuclear receptor corepressor 1, to specific cis-regulatory elements in the Ifng locus. This recruitment associated with reduced histone acetylation at these sites. Knockdown of nuclear receptor corepressor 1 in primary male T cells abolished the effect of fenofibrate in reducing IFN-γ production. In contrast, treatment of male T cells with IS001, a novel antagonist of PPARα, increased Ifng gene expression and histone acetylation across the Ifng locus. Finally, we investigated the effects of IS001 on IFN-γ responses in mice during infection with the Th1-associated pathogen Listeria monocytogenes and observed that IS001 enhanced IFN-γ production by NKT, CD4+, and CD8+ T cells and improved the survival of male, but not female, mice. Our findings provide a novel mechanism of why IFN-γ responses are more robust in females and introduce a small-molecule IS001 that can be used to enhance Th1 immunity in males.