Thitiwan Patanasatienkul
University of Prince Edward Island
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Thitiwan Patanasatienkul.
Diseases of Aquatic Organisms | 2013
Thitiwan Patanasatienkul; Javier Sanchez; Erin E. Rees; Martin Krkošek; Simon R. M. Jones; Crawford W. Revie
Juvenile pink salmon Oncorhynchus gorbuscha and chum salmon O. keta were sampled by beach or purse seine to assess levels of sea lice infestation in the Knight Inlet and Broughton Archipelago regions of coastal British Columbia, Canada, during the months of March to July from 2003 to 2012. Beach seine data were analyzed for sea lice infestation that was described in terms of prevalence, abundance, intensity, and intensity per unit length. The median annual prevalence for chum was 30%, ranging from 14% (in 2008 and 2009) to 73% (in 2004), while for pink salmon, the median was 27% and ranged from 10% (in 2011) to 68% (in 2004). Annual abundance varied from 0.2 to 5 sea lice per fish with a median of 0.47 for chum and from 0.1 to 3 lice (median 0.42) for pink salmon. Annual infestation followed broadly similar trends for both chum and pink salmon. However, the abundance and intensity of Lepeophtheirus salmonis and Caligus clemensi, the 2 main sea lice species of interest, were significantly greater on chum than on pink salmon in around half of the years studied. Logistic regression with random effect was used to model prevalence of sea lice infestation for the combined beach and purse seine data. The model suggested inter-annual variation as well as a spatial clustering effect on the prevalence of sea lice infestation in both chum and pink salmon. Fish length had an effect on prevalence, although the nature of this effect differed according to host species.
Preventive Veterinary Medicine | 2015
Thitiwan Patanasatienkul; Javier Sanchez; Erin E. Rees; Dirk U. Pfeiffer; Crawford W. Revie
Sea lice infestation levels on wild chum and pink salmon in the Broughton Archipelago region are known to vary spatially and temporally; however, the locations of areas associated with a high infestation level had not been investigated yet. In the present study, the multivariate spatial scan statistic based on a Poisson model was used to assess spatial clustering of elevated sea lice (Caligus clemensi and Lepeophtheirus salmonis) infestation levels on wild chum and pink salmon sampled between March and July of 2004 to 2012 in the Broughton Archipelago and Knight Inlet regions of British Columbia, Canada. Three covariates, seine type (beach and purse seining), fish size, and year effect, were used to provide adjustment within the analyses. The analyses were carried out across the five months/datasets and between two fish species to assess the consistency of the identified clusters. Sea lice stages were explored separately for the early life stages (non-motile) and the late life stages of sea lice (motile). Spatial patterns in fish migration were also explored using monthly plots showing the average number of each fish species captured per sampling site. The results revealed three clusters for non-motile C. clemensi, two clusters for non-motile L. salmonis, and one cluster for the motile stage in each of the sea lice species. In general, the location and timing of clusters detected for both fish species were similar. Early in the season, the clusters of elevated sea lice infestation levels on wild fish are detected in areas closer to the rivers, with decreasing relative risks as the season progresses. Clusters were detected further from the estuaries later in the season, accompanied by increasing relative risks. In addition, the plots for fish migration exhibit similar patterns for both fish species in that, as expected, the juveniles move from the rivers toward the open ocean as the season progresses The identification of space-time clustering of infestation on wild fish from this study can help in targeting investigations of factors associated with these infestations and thereby support the development of more effective sea lice control measures.
Scientific Reports | 2018
Omid Nekouei; Raphaël Vanderstichel; Krishna K. Thakur; Gabriel Arriagada; Thitiwan Patanasatienkul; Patrick Whittaker; Barry Milligan; Lance Stewardson; Crawford W. Revie
Growth in salmon aquaculture over the past two decades has raised concerns regarding the potential impacts of the industry on neighboring ecosystems and wild fish productivity. Despite limited evidence, sea lice have been identified as a major cause for the decline in some wild Pacific salmon populations on the west coast of Canada. We used sea lice count and management data from farmed and wild salmon, collected over 10 years (2007–2016) in the Muchalat Inlet region of Canada, to evaluate the association between sea lice recorded on salmon farms with the infestation levels on wild out-migrating Chum salmon. Our analyses indicated a significant positive association between the sea lice abundance on farms and the likelihood that wild fish would be infested. However, increased abundance of lice on farms was not significantly associated with the levels of infestation observed on the wild salmon. Our results suggest that Atlantic salmon farms may be an important source for the introduction of sea lice to wild Pacific salmon populations, but that the absence of a dose response relationship indicates that any estimate of farm impact requires more careful evaluation of causal inference than is typically seen in the extant scientific literature.
Preventive Veterinary Medicine | 2018
Sophie St-Hilaire; Thitiwan Patanasatienkul; J. Yu; Anja B. Kristoffersen; Henrik Stryhn; Crawford W. Revie; R. Ibarra; A. Tello; Gregor McEwan
Caligus rogercresseyi is a host-dependent parasite that affects rainbow trout and Atlantic salmon in Chile. Numbers of sea lice on fish increase over time at relatively predictable rates when the environment is conducive to the parasites survival and fish are not undergoing treatment. We developed a tool for the salmon industry in Chile that predicts the abundance of adult sea lice over time on farms that are relatively isolated. We used data on sea louse abundance collected through the SalmonChile INTESAL sea lice monitoring program to create series of weekly lice counts between lice treatment events on isolated farms. We defined isolated farms as those with no known neighbors within a 10 km seaway distance and no more than two neighbors within a 20 km seaway distance. We defined the time between sea lice treatments as starting the week immediately post treatment and ending the week before a subsequent treatment. Our final dataset of isolated farms consisted of 65 series from 32 farms, between 2009 and 2015. Given an observed abundance at time t = 0, we built a model that predicted 8 consecutive weekly sea louse abundance levels, based on the preceding weeks lice prediction. We calibrated the parameters in our model on a randomly selected subset of training data, choosing the parameter combinations that minimized the absolute difference between the predicted and observed sea louse abundance values. We validated the parameters on the remaining, unseen, subset of data. We encoded our model and made it available as a Web-accessible applet for producers. We determined a threshold, based on the upper 97.5% predictive interval, as a guideline for producers using the tool. We hypothesize that if farms exceed this threshold, especially if the sea lice levels are above this threshold 2 and 4 weeks into the model predictions, the sea louse population on the farm is likely influenced by sources other than lice within the farm.
Frontiers in Marine Science | 2018
Krishna K. Thakur; Raphaël Vanderstichel; Jeffrey Barrell; Henrik Stryhn; Thitiwan Patanasatienkul; Crawford W. Revie
Sea surface temperature (SST) and salinity (SSS) are essential variables at the ocean and atmosphere interface when considering risk factors for disease in farmed and wild fish stocks. Ecological research has witnessed a recent trend in use of digital and satellite technologies, including remote-sensing tools. We explored spatial coverage of remotely-sensed SST and SSS data and compared them with in situ measurements of water temperatures and salinity, which led to suggested adjustments to the remotely-sensed data for its use in aquaculture research. The in situ data were from farms and wild surveillance sites in coastal British Columbia, Canada, from 2003 to 2016. Concurrent SST and SSS values were extracted from remotely-sensed products and compared with 20,513 and 20,038 in situ records for water temperature and salinity, respectively, from 232 different sites. Among nine SST products evaluated, the UKMO OSTIA SST (UK Meteorological Office) had the highest retrieval, and highest concordance correlation coefficient (0.86), highest index of agreement (0.93), fewest missing values, and smallest mean and SD values for bias, when compared to in situ measurements. A mixed linear regression model with UKMO OSTIA SST as the predictor for in situ measurements estimated an adjustment coefficient of 0.89 °C for UKMO OSTIA SST. None of the three SSS products evaluated provided appropriate corresponding values for in situ sites, suggesting that spatial coverage for the study area is currently lacking. This study demonstrates that, among SST products, UKMO OSTIA SST is currently best suited for aquaculture studies in coastal BC. The near real-time availability of these data with the estimated adjustment would allow their use in forecast models, surveillance of pathogens, and the creation of risk maps.
Landscape Ecology | 2015
Erin E. Rees; Sophie St-Hilaire; Simon R. M. Jones; Martin Krkošek; S. DeDominicis; Michael G. G. Foreman; Thitiwan Patanasatienkul; Crawford W. Revie
Management of Biological Invasions | 2014
Thitiwan Patanasatienkul; Crawford W. Revie; Jeff Davidson; Javier Sanchez
Preventive Veterinary Medicine | 2018
Sophie St-Hilaire; Thitiwan Patanasatienkul; J. Yu; Anja B. Kristoffersen; Henrik Stryhn; Crawford W. Revie; R. Ibarra; A. Tello; Gregor McEwan
Aquaculture Research | 2018
Krishna K. Thakur; Thitiwan Patanasatienkul; Emilie Laurin; Raphaël Vanderstichel; Flavio Corsin; Larry Hammell
Ecosphere | 2017
Ruth Cox; Maya L. Groner; Christopher D. Todd; G. Gettinby; Thitiwan Patanasatienkul; Crawford W. Revie