Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thiyagarajan Ramesh is active.

Publication


Featured researches published by Thiyagarajan Ramesh.


Cell and Tissue Research | 2012

Comparative investigation of the differentiation capability of bone-marrow- and adipose-derived mesenchymal stem cells by qualitative and quantitative analysis

Radhakrishnan Vishnubalaji; May Al-Nbaheen; Balamuthu Kadalmani; Abdullah Aldahmash; Thiyagarajan Ramesh

Mesenchymal stem cells (MSCs) hold promise for cell-based therapy in regenerative medicine. To date, MSCs have been obtained from conventional bone marrow via a highly invasive procedure. Therefore, MSCs are now also isolated from sources such as adipose tissue, cord blood and cord stroma, a subject of growing interest. As the characterization and differentiation potential of adipose-derived MSCs (AD-MSCs) and bone-marrow-derived MSCs (BM-MSCs) have not been documented, we have evaluated and compared the characteristics of both MSC types by qualitative and quantitative analyses. Both cell types show similar morphology and surface protein expression, being positive for stromal-associated markers and negative for hematopoietic and endothelial markers. The colony-forming potential of AD-MSCs is distinctly higher than that of BM-MSCs. Nonetheless, similar adipogenic and osteogenic differentiation is observed in both groups of MSCs. Cytochemical qualitative analysis and calcium mineralization demonstrate higher levels toward osteogenic differentiation in BM-MSCs than in AD-MSCs. On the contrary, the percentage of Nile red oil staining for differentiated adipocytes is higher in AD-MSCs than in BM-MSCs. Quantitative real-time polymerase chain reaction shows similar patterns of osteogenic- and adipogenic-associated gene expression in both cell types. Each of the MSCs respond in functional analysis by exhibiting unique properties at the differentiation level according to their micro-environmental niche. Thus, quantitative analysis might be a valuable means of describing stem cell multipotency, in addition to qualitative investigation.


Experimental Gerontology | 2012

Effect of fermented Panax ginseng extract (GINST) on oxidative stress and antioxidant activities in major organs of aged rats.

Thiyagarajan Ramesh; Sung-Won Kim; Jong-Hwan Sung; Seock-Yeon Hwang; Sang-Hyon Sohn; Sung-Kwang Yoo; Si-Kwan Kim

The intracellular levels of oxidant and antioxidant balances are gradually distorted during the aging process. An age associated elevation of oxidative stress occurring throughout the lifetime is hypothesized to be the major cause of aging. The present study was undertaken to evaluate the putative antioxidant activity of the fermented Panax ginseng extract (GINST) on lipid peroxidation and antioxidant status of major organs of aged rats compared to young rats. Increased levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), urea and creatinine were observed in the serum of aged rats. Increased levels of malondialdehyde (MDA) and significantly lowered activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione-S-transferase (GST) were observed in the liver, kidneys, heart and lungs of aged rats, when compared with those in young rats. Quantitative analysis of the non-enzymatic antioxidants such as reduced glutathione (GSH), ascorbic acid and α-tocopherol levels showed significantly lower values in the liver, kidneys, heart and lungs of aged rats. On the other hand, administration of the fermented Panax ginseng extract (GINST) to aged rats resulted in increased activities of SOD, CAT, GPx, GR and GST as well as elevation in GSH, ascorbic acid and α-tocopherol levels. Besides, the level of MDA, AST, ALT, urea and creatinine were reduced on administration of GINST to aged rats. These results suggested that treatment of GINST can improve the antioxidant status during aging, thereby minimizing the oxidative stress and occurrence of age-related disorders associated with free radicals.


Nutrition Research | 2012

Panax ginseng reduces oxidative stress and restores antioxidant capacity in aged rats

Thiyagarajan Ramesh; Sung-Won Kim; Seock-Yeon Hwang; Sang-Hyun Sohn; Sung-Kwang Yoo; Si-Kwan Kim

Nutritional antioxidants interact with cells in an active mode, including retrieving and sparing one another, to diminish oxidative stress. However, the intracellular balance of prooxidants and antioxidants becomes unbalanced, favoring prooxidants during the aging process. One hypothesis is that an aging-associated increase in oxidative stress is the primary cause of aging. Hence, the research hypothesis for this study is that Korean red ginseng reduces oxidative stress in vivo. Therefore, we investigated the efficacy of Korean red ginseng water extract (GWE) in reducing aging-associated oxidative stress by measuring lipid peroxidation and antioxidant levels in older rats compared with young rats. We observed a significant increase in the markers for oxidative damage (eg, lipid peroxidation) and markers for vital organ damage (eg, aspartate aminotransferase, alanine aminotransferase, urea, and creatinine levels) in aged rats. The oxidative damage was accompanied by a significant decrease in enzymatic antioxidants such as superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glutathione-S-transferase, and nonenzymatic antioxidants such as reduced glutathione, vitamin E, and vitamin C. Aged rats fed a diet supplemented with Korean red ginseng water extract had significantly less oxidative damage, possibly by enhancing the enzymatic and nonenzymatic antioxidants status. Our data suggest that consumption of Korean red ginseng reduces lipid peroxidation and restores antioxidant capacity by suppressing oxidative stress in rats.


Cell and Tissue Research | 2012

Skin-derived multipotent stromal cells – an archrival for mesenchymal stem cells

Radhakrishnan Vishnubalaji; May Al-Nbaheen; Balamuthu Kadalmani; Abdullah Aldahmash; Thiyagarajan Ramesh

Progenitor stem cells have been identified, isolated and characterized in numerous tissues and organs. However, their therapeutic potential and the use of these stem cells remain elusive except for a few progenitor cells from bone marrow, umbilical cord blood, eyes and dental pulp. The use of bone marrow-derived hematopoietic stem cells (HSC) or mesenchymal stem cells (MSCs) is restricted due to their extreme invasive procedures, low differentiation potential with age and rejection. Thus, we need a clinical grade alternative to progenitor stem cells with a high potential to differentiate, naïve and is relatively easy in in vitro propagation. In this review, we summarize cell populations of adherent and floating spheres derived from different origins of skin, or correctly foreskin, by enzymatic digestion compared with established MSCs. The morphology, phenotype, differentiation capability and immunosuppressive property of the adherent cell populations are comparable with MSCs. Serum-free cultured floating spheres have limited mesodermal but higher neurogenic differentation potential, analogous to neural crest stem cells. Both the populations confirmed their plethora potential in in vitro. Together, it may be noted that the skin-derived adherent cell populations and floating cells can be good alternative sources of progenitor cells especially in cosmetic, plastic and sports regenerative medicine.


Journal of Cardiovascular Pharmacology | 2008

Cardioprotective effects of Sesbania grandiflora in cigarette smoke-exposed rats.

Thiyagarajan Ramesh; Ramalingam Mahesh; Chandrabose Sureka; Vavamohaideen Hazeena Begum

Cigarette smoke is a major risk factor of coronary heart disease, myocardial infarction, and cardiac death. It has been reported to contain large amounts of oxidants. This study was undertaken to evaluate the cardioprotective effects of Sesbania grandiflora (S. grandiflora) against cigarette smoke-induced oxidative damage in rats. Adult male Wistar-Kyoto rats were exposed to cigarette smoke for a period of 90 days and consecutively treated with S. grandiflora aqueous suspension (SGAS, 1000 mg/kg body weight per day orally) for a period of 3 weeks. Lactate dehydrogenase activity in serum and cardiac lipid peroxidation product level were significantly increased while the activities of cardiac superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione-S-transferase, and glucose-6-phosphate dehydrogenase then the levels of reduced glutathione, vitamin C, and vitamin E were significantly decreased in rats exposed to cigarette smoke. Besides, copper level was elevated, whereas zinc, manganese, and selenium levels were significantly diminished in the heart of rats exposed to cigarette smoke. Treatment with SGAS restored the antioxidant status and retained the levels of micronutrients. These results suggest that chronic cigarette smoke exposure increases the oxidative stress, thereby disquieting the cardiac defense system and S. grandiflora protects the heart from the oxidative damage through its antioxidant potential.


Biochemistry and Cell Biology | 2015

Attenuation of erythrocyte membrane oxidative stress by Sesbania grandiflora in streptozotocin-induced diabetic rats

Chandrabose Sureka; Thiyagarajan Ramesh; Vavamohaideen Hazeena Begum

The aim of the present study was to investigate the protective effects of Sesbania grandiflora flower (SGF) extract on erythrocyte membrane in Streptozotocin (STZ)-induced diabetic rats. Adult male albino rats of Wistar strain, weighing 190-220 g, were made diabetic by an intraperitonial administration of STZ (45 mg/kg). Normal and diabetic rats were treated with SGF, and diabetic rats were also treated with glibenclamide as drug control, for 45 days. In this study plasma insulin and haemoglobin levels were decreased and blood glucose, glycosylated haemoglobin, protein oxidation, lipid peroxidation markers, and osmotic fragility levels were increased in diabetic rats. Moreover, erythrocytes antioxidant enzymes such as superoxide dismutase, catalase, glutathione peroxide, glutathione reductase, glutathione-S-transferase, and glucose-6-phosphate dehydrogenase activities and non-enzymatic antioxidants such as vitamin C, vitamin E, reduced glutathione (GSH), and oxidized glutathione (GSSG) levels were altered. Similarly, the activities of total ATPases, Na(+)/K(+)-ATPase, Ca(2+)-ATPase, and Mg(2+)-ATPase were also decreased in the erythrocytes of diabetic rats. Administration of SGF to STZ-induced diabetic rats reduced blood glucose and glycosylated haemoglobin levels with increased levels of insulin and haemoglobin. Moreover, SGF reversed the protein and lipid peroxidation markers, osmotic fragility, membrane-bound ATPases activities, and antioxidant status in STZ-induced diabetic rats. These results suggest that SGF could provide a protective effect on diabetes by decreasing oxidative stress-associated diabetic complications.


Experimental Gerontology | 2012

Cordycepin (3′-deoxyadenosine) attenuates age-related oxidative stress and ameliorates antioxidant capacity in rats

Thiyagarajan Ramesh; Sung-Kwang Yoo; Sung-Won Kim; Seock-Yeon Hwang; Sang-Hyun Sohn; Il-Woung Kim; Si-Kwan Kim


Journal of Cancer Research and Clinical Oncology | 2011

Molecular and histological evaluation of tumor necrosis factor-alpha expression in Helicobacter pylori-mediated gastric carcinogenesis

Cinghu Senthilkumar; Sivasithambaram Niranjali; Venkatraman Jayanthi; Thiyagarajan Ramesh; Halagowder Devaraj


Molecular and Cellular Biochemistry | 2012

Molecular assessment of c-H-ras p21 expression in Helicobacter pylori-mediated gastric carcinogenesis

Chandrabose Sureka; Thiyagarajan Ramesh


고려인삼학회 학술대회 | 2011

Modulatory role of Panax ginseng on senile testicular dysfunction in aged rats

Sang-Hyun Sohn; Sung-Won Kim; Thiyagarajan Ramesh; Il-Woung Kim; Sung-Kwang Yoo; Bum-Nara Kim; Da-Hye Hwang; Si-Kwan Kim

Collaboration


Dive into the Thiyagarajan Ramesh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge