Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas A. Blackwell is active.

Publication


Featured researches published by Thomas A. Blackwell.


Journal of Cachexia, Sarcopenia and Muscle | 2017

Mitochondrial degeneration precedes the development of muscle atrophy in progression of cancer cachexia in tumour-bearing mice

Jacob L. Brown; Megan E. Rosa-Caldwell; David E. Lee; Thomas A. Blackwell; Lemuel A. Brown; Richard A. Perry; Wesley S. Haynie; Justin P. Hardee; James A. Carson; Mp Wiggs; Tyrone A. Washington; Nicholas P. Greene

Cancer cachexia is largely irreversible, at least via nutritional means, and responsible for 20–40% of cancer‐related deaths. Therefore, preventive measures are of primary importance; however, little is known about muscle perturbations prior to onset of cachexia. Cancer cachexia is associated with mitochondrial degeneration; yet, it remains to be determined if mitochondrial degeneration precedes muscle wasting in cancer cachexia. Therefore, our purpose was to determine if mitochondrial degeneration precedes cancer‐induced muscle wasting in tumour‐bearing mice.


Physiological Genomics | 2017

Cancer cachexia-induced muscle atrophy: evidence for alterations in microRNAs important for muscle size

David E. Lee; Jacob L. Brown; Megan E. Rosa-Caldwell; Thomas A. Blackwell; Richard A. Perry; Lemuel A. Brown; Bhuwan Khatri; Dongwon Seo; Walter Bottje; Tyrone A. Washington; Mp Wiggs; Byung-Whi Kong; Nicholas P. Greene

Muscle atrophy is a hallmark of cancer cachexia resulting in impaired function and quality of life and cachexia is the immediate cause of death for 20-40% of cancer patients. Multiple microRNAs (miRNAs) have been identified as being involved in muscle development and atrophy; however, less is known specifically on miRNAs in cancer cachexia. The purpose of this investigation was to examine the miRNA profile of skeletal muscle atrophy induced by cancer cachexia to uncover potential miRNAs involved with this catabolic condition. Phosphate-buffered saline (PBS) or Lewis lung carcinoma cells (LLC) were injected into C57BL/6J mice at 8 wk of age. LLC animals were allowed to develop tumors for 4 wk to induce cachexia. Tibialis anterior muscles were extracted and processed to isolate small RNAs, which were used for miRNA sequencing. Sequencing results were assembled with mature miRNAs, and functions of miRNAs were analyzed by Ingenuity Pathway Analysis. LLC animals developed tumors that contributed to significantly smaller tibialis anterior muscles (18.5%) and muscle cross-sectional area (40%) compared with PBS. We found 371 miRNAs to be present in the muscle above background levels. Of these, nine miRNAs were found to be differentially expressed. Significantly altered groups of miRNAs were categorized into primary functionalities including cancer, cell-to-cell signaling, and cellular development among others. Gene network analysis predicted specific alterations of factors contributing to muscle size including Akt, FOXO3, and others. These results create a foundation for future research into the sufficiency of targeting these genes to attenuate muscle loss in cancer cachexia.


Acta Physiologica | 2017

PGC‐1α4 gene expression is suppressed by the IL‐6—MEK—ERK 1/2 MAPK signalling axis and altered by resistance exercise, obesity and muscle injury

Jacob L. Brown; Megan E. Rosa-Caldwell; David E. Lee; Lemuel A. Brown; Richard A. Perry; Kevin L. Shimkus; Thomas A. Blackwell; James D. Fluckey; James A. Carson; Sami Dridi; Tyrone A. Washington; Nicholas P. Greene

PGC‐1α4 is a novel regulator of muscle hypertrophy; however, there is limited understanding of the regulation of its expression and role in many (patho)physiological conditions. Therefore, our purpose was to elicit signalling mechanisms regulating gene expression of Pgc1α4 and examine its response to (patho)physiological stimuli associated with altered muscle mass.


Current Diabetes Reviews | 2018

Skeletal muscle insulin resistance as a precursor to Diabetes: Beyond glucoregulation.

Nicholas P. Greene; Jacob L. Brown; Megan E. Rosa-Caldwell; David E. Lee; Thomas A. Blackwell; Tyrone A. Washington

BACKGROUND Prevalence of Type 2 Diabetes Mellitus (T2DM) has reached pandemic levels in the Western societies. T2DM begins with the development of peripheral insulin resistance which prior research suggests may commonly originate within the skeletal muscle. A number of mechanisms have been proposed for the development of muscle insulin resistance including those of classical glucose handling, and also other cellular derangements observed in this disease which include mitochondrial degeneration, alterations in muscle protein turnover and early evidences for dysregulation of the microRNAs. The purpose of the current review is to examine the current findings on these latter aspects of mitochondrial maintenance, protein turnover and microRNA dysregulation along with the potential implications for these derangements in the development of insulin resistance and hence T2DM. We summarize multiple evidences for the degeneration of mitochondria and known elements of the processes regulating mitochondrial quality. Subsequently, we examine current findings of the alterations in muscle protein synthesis and autophagic protein degradation in T2DM and potential feedback of these systems onto canonical insulin signaling. Finally, evidences have emerged for the dysregulation of microRNAs in muscle insulin resistance. Of note early data point to several microRNAs altered by the insulin resistant state which exhibit relations to classic insulin signaling and the other processes discussed here. CONCLUSION Considering that T2DM may be initiated with muscle insulin resistance, improved understanding of the dysregulation of these metabolic parameters of skeletal muscle in the pathogenesis of T2DM may be key to developing efficacious therapeutic modalities to prevent and treat this condition.


Experimental Physiology | 2017

Autophagy activation, not peroxisome proliferator‐activated receptor γ coactivator 1α, may mediate exercise‐induced improvements in glucose handling during diet‐induced obesity

Megan E. Rosa-Caldwell; Jacob L. Brown; David E. Lee; Thomas A. Blackwell; Kyle W. Turner; Lemuel A. Brown; Richard A. Perry; Wesley S. Haynie; Tyrone A. Washington; Nicholas P. Greene

What is the central question of this study? What are the individual and combined effects of muscle‐specific peroxisome proliferator‐activated receptor γ coactivator 1α (PGC‐1α) overexpression and physical activity during high‐fat feeding on glucose and exercise tolerance? What is the main finding and its importance? Our main finding is that muscle‐specific PGC‐1α overexpression provides no protection against lipid‐overload pathologies nor does it enhance exercise adaptations. Instead, physical activity, regardless of PGC‐1α content, protects against high‐fat diet‐induced detriments. Activation of muscle autophagy was correlated with exercise protection, suggesting that autophagy might be a mediating factor for exercise‐induced protection from lipid overload.


Physiological Genomics | 2018

A Transcriptomic Analysis of the Development of Skeletal Muscle Atrophy in Cancer-Cachexia in Tumor-Bearing Mice

Thomas A. Blackwell; Igor Cervenka; Bhuwan Khatri; Jacob L. Brown; Megan E. Rosa-Caldwell; David E. Lee; Richard A. Perry; Lemuel A. Brown; Wesley S. Haynie; Michael P. Wiggs; Walter Bottje; Tyrone A. Washington; Byungwhi C. Kong; Jorge L. Ruas; Nicholas P. Greene

Cancer-cachexia (CC) is a wasting condition directly responsible for 20-40% of cancer-related deaths. The mechanisms controlling development of CC-induced muscle wasting are not fully elucidated. Most investigations focus on the postcachectic state and do not examine progression of the condition. We recently demonstrated mitochondrial degenerations precede muscle wasting in time course progression of CC. However, the extent of muscle perturbations before wasting in CC is unknown. Therefore, we performed global gene expression analysis in CC-induced muscle wasting to enhance understanding of intramuscular perturbations across the development of CC. Lewis lung carcinoma (LLC) was injected into the hind-flank of C57BL6/J mice at 8 wk of age with tumor allowed to develop for 1, 2, 3, or 4 wk and compared with PBS-injected control. Muscle wasting was evident at 4 wk LLC. RNA sequencing of gastrocnemius muscle samples showed widespread alterations in LLC compared with PBS animals with largest differences seen in 4 wk LLC, suggesting extensive transcriptomic alterations concurrent to muscle wasting. Commonly altered pathways included: mitochondrial dysfunction and protein ubiquitination, along with other less studied processes in this condition regulating transcription/translation and cytoskeletal structure. Current findings present novel evidence of transcriptomic shifts and altered cellular pathways in CC-induced muscle wasting.


Experimental Physiology | 2017

Autophagy activation, not PGC-1α, may mediate exercise-induced improvements in glucose handling during diet-induced obesity

Megan E. Rosa-Caldwell; Jacob L. Brown; David E. Lee; Thomas A. Blackwell; Kyle W. Turner; Lemuel A. Brown; Richard A. Perry; Wesley S. Haynie; Tyrone A. Washington; Nicholas P. Greene

What is the central question of this study? What are the individual and combined effects of muscle‐specific peroxisome proliferator‐activated receptor γ coactivator 1α (PGC‐1α) overexpression and physical activity during high‐fat feeding on glucose and exercise tolerance? What is the main finding and its importance? Our main finding is that muscle‐specific PGC‐1α overexpression provides no protection against lipid‐overload pathologies nor does it enhance exercise adaptations. Instead, physical activity, regardless of PGC‐1α content, protects against high‐fat diet‐induced detriments. Activation of muscle autophagy was correlated with exercise protection, suggesting that autophagy might be a mediating factor for exercise‐induced protection from lipid overload.


Medicine and Science in Sports and Exercise | 2017

Timecourse Of Alterations In Myofiber CSA And Oxidative Phenotype In Progression Of Cancer-cachexia: 100 Board #2 May 31 9

Nicholas P. Greene; Jacob L. Brown; Megan E. Rosa; David E. Lee; Thomas A. Blackwell; Haley N. McCarver; Richard A. Perry; Lemuel A. Brown; Wesley S. Haynie; Michael P. Wiggs; Tyrone A. Washington


Medicine and Science in Sports and Exercise | 2017

Cancer-cachexia Upregulates Autophagy Machinery: 2698 Board #218 June 2 11

Jacob L. Brown; Megan E. Rosa-Caldwell; David E. Lee; Thomas A. Blackwell; Richard A. Perry; Lemuel A. Brown; Wesley S. Haynie; Michael P. Wiggs; Tyrone A. Washington; Nicholas P. Greene


Medicine and Science in Sports and Exercise | 2017

Myogenic And Atrophic Signaling In The Progression Of Cancer-cachexia: 2685 Board #205 June 2 11

Thomas A. Blackwell; Jacob L. Brown; David E. Lee; Megan E. Rosa-Caldwell; Richard A. Perry; Lemuel A. Brown; Wesley S. Haynie; Michael P. Wiggs; Tyrone A. Washington; Nicholas P. Greene

Collaboration


Dive into the Thomas A. Blackwell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge