Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas A. Down is active.

Publication


Featured researches published by Thomas A. Down.


Nucleic Acids Research | 2002

The Ensembl genome database project

Tim Hubbard; Darren Barker; Ewan Birney; Graham Cameron; Yuan Chen; L. Clark; Tony Cox; James Cuff; V. Curwen; Thomas A. Down; Richard Durbin; E. Eyras; James Gilbert; Martin Hammond; L. Huminiecki; Arek Kasprzyk; Heikki Lehväslaiho; Philip Lijnzaad; Craig Melsopp; Emmanuel Mongin; R. Pettett; M. Pocock; Simon Potter; A. Rust; Esther Schmidt; Stephen M. J. Searle; Guy Slater; J. Smith; W. Spooner; A. Stabenau

The Ensembl (http://www.ensembl.org/) database project provides a bioinformatics framework to organise biology around the sequences of large genomes. It is a comprehensive source of stable automatic annotation of the human genome sequence, with confirmed gene predictions that have been integrated with external data sources, and is available as either an interactive web site or as flat files. It is also an open source software engineering project to develop a portable system able to handle very large genomes and associated requirements from sequence analysis to data storage and visualisation. The Ensembl site is one of the leading sources of human genome sequence annotation and provided much of the analysis for publication by the international human genome project of the draft genome. The Ensembl system is being installed around the world in both companies and academic sites on machines ranging from supercomputers to laptops.


Nature Genetics | 2006

DNA methylation profiling of human chromosomes 6, 20 and 22

Florian Eckhardt; Jörn Lewin; Rene Cortese; Vardhman K. Rakyan; John Attwood; Matthias Burger; John Burton; Tony Cox; Rob Davies; Thomas A. Down; Carolina Haefliger; Roger Horton; Kevin L. Howe; David K. Jackson; Jan Kunde; Christoph Koenig; Jennifer Liddle; David Niblett; Thomas Otto; Roger Pettett; Stefanie Seemann; Christian Thompson; Tony West; Jane Rogers; Alex Olek; Kurt Berlin; Stephan Beck

DNA methylation is the most stable type of epigenetic modification modulating the transcriptional plasticity of mammalian genomes. Using bisulfite DNA sequencing, we report high-resolution methylation profiles of human chromosomes 6, 20 and 22, providing a resource of about 1.9 million CpG methylation values derived from 12 different tissues. Analysis of six annotation categories showed that evolutionarily conserved regions are the predominant sites for differential DNA methylation and that a core region surrounding the transcriptional start site is an informative surrogate for promoter methylation. We find that 17% of the 873 analyzed genes are differentially methylated in their 5′ UTRs and that about one-third of the differentially methylated 5′ UTRs are inversely correlated with transcription. Despite the fact that our study controlled for factors reported to affect DNA methylation such as sex and age, we did not find any significant attributable effects. Our data suggest DNA methylation to be ontogenetically more stable than previously thought.


Nature Reviews Genetics | 2011

Epigenome-wide association studies for common human diseases

Vardhman K. Rakyan; Thomas A. Down; David J. Balding; Stephan Beck

Despite the success of genome-wide association studies (GWASs) in identifying loci associated with common diseases, a substantial proportion of the causality remains unexplained. Recent advances in genomic technologies have placed us in a position to initiate large-scale studies of human disease-associated epigenetic variation, specifically variation in DNA methylation. Such epigenome-wide association studies (EWASs) present novel opportunities but also create new challenges that are not encountered in GWASs. We discuss EWAS design, cohort and sample selections, statistical significance and power, confounding factors and follow-up studies. We also discuss how integration of EWASs with GWASs can help to dissect complex GWAS haplotypes for functional analysis.


Nature Biotechnology | 2008

A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis

Thomas A. Down; Vardhman K. Rakyan; Daniel J. Turner; Paul Flicek; Heng Li; Eugene Kulesha; Stefan Gräf; Nathan Johnson; Javier Herrero; Eleni M. Tomazou; Natalie P. Thorne; Liselotte Bäckdahl; Marlis Herberth; Kevin L. Howe; David K. Jackson; Marcos M Miretti; John C. Marioni; Ewan Birney; Tim Hubbard; Richard Durbin; Simon Tavaré; Stephan Beck

DNA methylation is an indispensible epigenetic modification required for regulating the expression of mammalian genomes. Immunoprecipitation-based methods for DNA methylome analysis are rapidly shifting the bottleneck in this field from data generation to data analysis, necessitating the development of better analytical tools. In particular, an inability to estimate absolute methylation levels remains a major analytical difficulty associated with immunoprecipitation-based DNA methylation profiling. To address this issue, we developed a cross-platform algorithm—Bayesian tool for methylation analysis (Batman)—for analyzing methylated DNA immunoprecipitation (MeDIP) profiles generated using oligonucleotide arrays (MeDIP-chip) or next-generation sequencing (MeDIP-seq). We developed the latter approach to provide a high-resolution whole-genome DNA methylation profile (DNA methylome) of a mammalian genome. Strong correlation of our data, obtained using mature human spermatozoa, with those obtained using bisulfite sequencing suggest that combining MeDIP-seq or MeDIP-chip with Batman provides a robust, quantitative and cost-effective functional genomic strategy for elucidating the function of DNA methylation.


Nature Genetics | 2009

Differential chromatin marking of introns and expressed exons by H3K36me3

Paulina Kolasinska-Zwierz; Thomas A. Down; Isabel Latorre; Tao Liu; X. Shirley Liu; Julie Ahringer

Variation in patterns of methylations of histone tails reflects and modulates chromatin structure and function. To provide a framework for the analysis of chromatin function in Caenorhabditis elegans, we generated a genome-wide map of histone H3 tail methylations. We find that C. elegans genes show distributions of histone modifications that are similar to those of other organisms, with H3K4me3 near transcription start sites, H3K36me3 in the body of genes and H3K9me3 enriched on silent genes. We also observe a novel pattern: exons are preferentially marked with H3K36me3 relative to introns. H3K36me3 exon marking is dependent on transcription and is found at lower levels in alternatively spliced exons, supporting a splicing-related marking mechanism. We further show that the difference in H3K36me3 marking between exons and introns is evolutionarily conserved in human and mouse. We propose that H3K36me3 exon marking in chromatin provides a dynamic link between transcription and splicing.


Science | 2013

Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine.

Jamie A Hackett; Roopsha Sengupta; Jan J Zylicz; Kazuhiro Murakami; Caroline M. Lee; Thomas A. Down; M. A. Surani

Epigenetic Controls Germ cells in mammals give rise to sperm and eggs. During their development, germ cells undergo extensive epigenetic reprogramming, including global DNA demethylation, which is vital for the totipotency of the developing embryo. Hackett et al. (p. 448) show that the enzymes Tet1 and Tet2 are involved in the demethylation of individual genes and in imprinted gametic differentially methylated regions. The enzymes were also responsible for the global conversion of CpG methylation to 5-hydroxymethylcytosine, which then progressively declines. The findings suggest that demethylation can occur by replication-coupled dilution, although active mechanisms cannot be excluded. A small number of loci escape demethylation, providing a possible mechanistic basis for transgenerational inheritance. Rare loci that escape epigenetic reprogramming in mammalian germ cells may underlie transgenerational epigenetic inheritance. Mouse primordial germ cells (PGCs) undergo sequential epigenetic changes and genome-wide DNA demethylation to reset the epigenome for totipotency. Here, we demonstrate that erasure of CpG methylation (5mC) in PGCs occurs via conversion to 5-hydroxymethylcytosine (5hmC), driven by high levels of TET1 and TET2. Global conversion to 5hmC initiates asynchronously among PGCs at embryonic day (E) 9.5 to E10.5 and accounts for the unique process of imprint erasure. Mechanistically, 5hmC enrichment is followed by its protracted decline thereafter at a rate consistent with replication-coupled dilution. The conversion to 5hmC is an important component of parallel redundant systems that drive comprehensive reprogramming in PGCs. Nonetheless, we identify rare regulatory elements that escape systematic DNA demethylation in PGCs, providing a potential mechanistic basis for transgenerational epigenetic inheritance.


Genome Research | 2010

Human aging-associated DNA hypermethylation occurs preferentially at bivalent chromatin domains

Vardhman K. Rakyan; Thomas A. Down; Siarhei Maslau; Toby Andrew; Tsun-Po Yang; Huriya Beyan; Pamela Whittaker; Owen T McCann; Sarah Finer; Ana M. Valdes; R. David Leslie; Panogiotis Deloukas; Tim D. Spector

There is a growing realization that some aging-associated phenotypes/diseases have an epigenetic basis. Here, we report the first genome-scale study of epigenomic dynamics during normal human aging. We identify aging-associated differentially methylated regions (aDMRs) in whole blood in a discovery cohort, and then replicate these aDMRs in sorted CD4(+) T-cells and CD14(+) monocytes in an independent cohort, suggesting that aDMRs occur in precursor haematopoietic cells. Further replication of the aDMRs in buccal cells, representing a tissue that originates from a different germ layer compared with blood, demonstrates that the aDMR signature is a multitissue phenomenon. Moreover, we demonstrate that aging-associated DNA hypermethylation occurs predominantly at bivalent chromatin domain promoters. This same category of promoters, associated with key developmental genes, is frequently hypermethylated in cancers and in vitro cell culture, pointing to a novel mechanistic link between aberrant hypermethylation in cancer, aging, and cell culture.


Genome Research | 2008

An integrated resource for genome-wide identification and analysis of human tissue-specific differentially methylated regions (tDMRs)

Vardhman K. Rakyan; Thomas A. Down; Natalie P. Thorne; Paul Flicek; Eugene Kulesha; Stefan Gräf; Eleni M. Tomazou; Liselotte Bäckdahl; Nathan Johnson; Marlis Herberth; Kevin L. Howe; David K. Jackson; Marcos M Miretti; Heike Fiegler; John C. Marioni; Ewan Birney; Tim Hubbard; Nigel P. Carter; Simon Tavaré; Stephan Beck

We report a novel resource (methylation profiles of DNA, or mPod) for human genome-wide tissue-specific DNA methylation profiles. mPod consists of three fully integrated parts, genome-wide DNA methylation reference profiles of 13 normal somatic tissues, placenta, sperm, and an immortalized cell line, a visualization tool that has been integrated with the Ensembl genome browser and a new algorithm for the analysis of immunoprecipitation-based DNA methylation profiles. We demonstrate the utility of our resource by identifying the first comprehensive genome-wide set of tissue-specific differentially methylated regions (tDMRs) that may play a role in cellular identity and the regulation of tissue-specific genome function. We also discuss the implications of our findings with respect to the regulatory potential of regions with varied CpG density, gene expression, transcription factor motifs, gene ontology, and correlation with other epigenetic marks such as histone modifications.


Bioinformatics | 2008

BioJava: an open-source framework for bioinformatics

Richard C. G. Holland; Thomas A. Down; Matthew R. Pocock; Andreas Prlić; David Huen; Keith James; Sylvain Foisy; Andreas Dräger; Andy Yates; Michael Heuer; Mark Schreiber

Summary: BioJava is a mature open-source project that provides a framework for processing of biological data. BioJava contains powerful analysis and statistical routines, tools for parsing common file formats and packages for manipulating sequences and 3D structures. It enables rapid bioinformatics application development in the Java programming language. Availability: BioJava is an open-source project distributed under the Lesser GPL (LGPL). BioJava can be downloaded from the BioJava website (http://www.biojava.org). BioJava requires Java 1.5 or higher. Contact: [email protected]. All queries should be directed to the BioJava mailing lists. Details are available at http://biojava.org/wiki/BioJava:MailingLists.


Nucleic Acids Research | 2003

Ensembl 2002: accommodating comparative genomics

Michele Clamp; D. Andrews; Darren Barker; Paul Bevan; Graham Cameron; Yuting Chen; Louise Clark; Tony Cox; James Cuff; Val Curwen; Thomas A. Down; Richard Durbin; Eduardo Eyras; James Gilbert; Martin Hammond; Tim Hubbard; Arek Kasprzyk; Damian Keefe; Heikki Lehväslaiho; Vishwanath R. Iyer; Craig Melsopp; Emmanuel Mongin; Roger Pettett; Simon Potter; Alistair G. Rust; Esther Schmidt; Steve Searle; Guy Slater; James Smith; William Spooner

The Ensembl (http://www.ensembl.org/) database project provides a bioinformatics framework to organise biology around the sequences of large genomes. It is a comprehensive source of stable automatic annotation of human, mouse and other genome sequences, available as either an interactive web site or as flat files. Ensembl also integrates manually annotated gene structures from external sources where available. As well as being one of the leading sources of genome annotation, Ensembl is an open source software engineering project to develop a portable system able to handle very large genomes and associated requirements. These range from sequence analysis to data storage and visualisation and installations exist around the world in both companies and at academic sites. With both human and mouse genome sequences available and more vertebrate sequences to follow, many of the recent developments in Ensembl have focusing on developing automatic comparative genome analysis and visualisation.

Collaboration


Dive into the Thomas A. Down's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vardhman K. Rakyan

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Stephan Beck

University College London

View shared research outputs
Top Co-Authors

Avatar

David K. Jackson

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kevin L. Howe

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Roger Pettett

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Ewan Birney

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Huriya Beyan

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Andreas Kähäri

European Bioinformatics Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge