Thomas A. Gerken
Case Western Reserve University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Thomas A. Gerken.
Glycobiology | 2012
Eric P. Bennett; Ulla Mandel; Henrik Clausen; Thomas A. Gerken; Timothy A Fritz; Lawrence A. Tabak
Glycosylation of proteins is an essential process in all eukaryotes and a great diversity in types of protein glycosylation exists in animals, plants and microorganisms. Mucin-type O-glycosylation, consisting of glycans attached via O-linked N-acetylgalactosamine (GalNAc) to serine and threonine residues, is one of the most abundant forms of protein glycosylation in animals. Although most protein glycosylation is controlled by one or two genes encoding the enzymes responsible for the initiation of glycosylation, i.e. the step where the first glycan is attached to the relevant amino acid residue in the protein, mucin-type O-glycosylation is controlled by a large family of up to 20 homologous genes encoding UDP-GalNAc:polypeptide GalNAc-transferases (GalNAc-Ts) (EC 2.4.1.41). Therefore, mucin-type O-glycosylation has the greatest potential for differential regulation in cells and tissues. The GalNAc-T family is the largest glycosyltransferase enzyme family covering a single known glycosidic linkage and it is highly conserved throughout animal evolution, although absent in bacteria, yeast and plants. Emerging studies have shown that the large number of genes (GALNTs) in the GalNAc-T family do not provide full functional redundancy and single GalNAc-T genes have been shown to be important in both animals and human. Here, we present an overview of the GalNAc-T gene family in animals and propose a classification of the genes into subfamilies, which appear to be conserved in evolution structurally as well as functionally.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Kishore Guda; Helen Moinova; Jian He; Oliver Jamison; Lakshmeswari Ravi; Leanna Natale; James Lutterbaugh; Earl Lawrence; Susan Lewis; James K V Willson; John B. Lowe; Georgia L. Wiesner; Giovanni Parmigiani; Jill S. Barnholtz-Sloan; Dawn Dawson; Victor E. Velculescu; Kenneth W. Kinzler; Nikolas Papadopoulos; Bert Vogelstein; Joseph Willis; Thomas A. Gerken; Sanford D. Markowitz
Aberrant glycosylation is a pathological alteration that is widespread in colon cancer, and usually accompanies the onset and progression of the disease. To date, the molecular mechanisms underlying aberrant glycosylation remain largely unknown. In this study, we identify somatic and germ-line mutations in the gene encoding for polypeptide N-acetylgalactosaminyltransferase 12 (GALNT12) in individuals with colon cancer. Biochemical analyses demonstrate that each of the 8 GALNT12 mutations identified inactivates the normal function of the GALNT enzyme in initiating mucin type O-linked protein glycosylation. Two of these inactivating GALNT12 mutations were identified as acquired somatic mutations in a set of 30 microsatellite stable colon tumors. Relative to background gene mutation rates, finding these somatic GALNT12 mutations was statistically significant at P < 0.001. Six additional inactivating GALNT12 mutations were detected as germ-line changes carried by patients with colon cancer; however, no inactivating variants were detected among cancer-free controls (P = 0.005). Notably, in 3 of the 6 individuals harboring inactivating germ-line GALNT12 mutations, both a colon cancer and a second independent epithelial cancer had developed. These findings suggest that genetic defects in the O-glycosylation pathway in part underlie aberrant glycosylation in colon cancers, and they contribute to the development of a subset of these malignancies.
Journal of Biological Chemistry | 2011
Thomas A. Gerken; Oliver Jamison; Cynthia L. Perrine; Jeremy C. Collette; Helen Moinova; Lakshmeswari Ravi; Sanford D. Markowitz; Wei Shen; Himatkumar Patel; Lawrence A. Tabak
Mammalian mucin-type O-glycosylation is initiated by a large family of ∼20 UDP-GalNAc:polypeptide α-N-acetylgalactosaminyltransferases (ppGalNAc Ts) that transfer α-GalNAc from UDP-GalNAc to Ser and Thr residues of polypeptide acceptors. Characterizing the peptide substrate specificity of each isoform is critical to understanding their properties, biological roles, and significance. Presently, only the specificities of ppGalNAc T1, T2, and T10 and the fly orthologues of T1 and T2 have been systematically characterized utilizing random peptide substrates. We now extend these studies to ppGalNAc T3, T5, and T12, transferases variously associated with human disease. Our results reveal several common features; the most striking is the similar pattern of enhancements for the three residues C-terminal to the site of glycosylation for those transferases that contain a common conserved Trp. In contrast, residues N-terminal to the site of glycosylation show a wide range of isoform-specific enhancements, with elevated preferences for Pro, Val, and Tyr being the most common at the −1 position. Further analysis reveals that the ratio of positive (Arg, Lys, and His) to negative (Asp and Glu) charged residue enhancements varied among transferases, thus further modulating substrate preference in an isoform-specific manner. By utilizing the obtained transferase-specific preferences, the glycosylation patterns of the ppGalNAc Ts against a series of peptide substrates could roughly be reproduced, demonstrating the potential for predicting isoform-specific glycosylation. We conclude that each ppGalNAc T isoform may be uniquely sensitive to peptide sequence and overall charge, which together dictates the substrate sites that will be glycosylated.
Biochemistry | 2009
Tarun K. Dam; Thomas A. Gerken; C. Fred Brewer
The high affinity (K(d) = 0.2 nM) of the soybean agglutinin (SBA), a tetrameric GalNAc specific lectin, for a modified form of porcine submaxillary mucin, a linear glycoprotein, with a molecular mass of approximately 10(6) Da and approximately 2300 GalNAcalpha1-O-Ser/Thr residues (Tn-PSM) has been ascribed to an internal diffusion mechanism that involves binding and jumping of the lectin from GalNAc to GalNAc residue of the mucin [Dam, T. K., et al. (2007) J. Biol. Chem. 282, 28256-28263]. Hill plot analysis of the raw ITC data shows increasing negative cooperativity, which correlates with an increasing number of lectin-mucin cross-linking interactions and decreasing favorable binding entropies. However, the affinity of bound SBA for other Tn-PSM molecules during cross-linking is much higher than that of free SBA for GalNAcalpha1-O-Ser, a monovalent analogue. The high affinity of bound SBA for GalNAc residues on other Tn-PSM molecules appears to be due to the favorable entropy of binding associated with the internal diffusion mechanism. Furthermore, the increasing negative cooperativity of SBA binding to Tn-PSM correlates with a decreasing level of internal diffusion of the lectin on the mucin as cross-linking occurs. These findings indicate the importance of the internal diffusion mechanism in generating large, favorable entropies of binding that drive lectin-mucin cross-linking interactions. The results are important for understanding the energetics of lectin-mucin cross-linking interactions that are associated with biological signaling on the surface of cells and the role of the internal diffusion mechanism in ligand-biopolymer interactions in general.
Journal of Biological Chemistry | 2007
Tarun K. Dam; Thomas A. Gerken; Benildo Sousa Cavada; Kyria S. Nascimento; Tales R. Moura; C. Fred Brewer
Isothermal titration microcalorimetry (ITC) and hemagglutination inhibition measurements demonstrate that a chemically and enzymatically prepared form of porcine submaxillary mucin that possesses a molecular mass of ∼106 daltons and ∼2300 α-GalNAc residues (Tn-PSM) binds to the soybean agglutinin (SBA) with a Kd of 0.2 nm, which is ∼106-fold enhanced affinity relative to GalNAcα1-O-Ser (Tn), the pancarcinoma carbohydrate antigen. The enzymatically derived 81 amino acid tandem repeat domain of Tn-PSM containing ∼23 α-GalNAc residues binds with ∼103-fold enhanced affinity, while the enzymatically derived 38/40 amino acid cleavage product(s) of Tn-PSM containing ∼11-12 α-GalNAc residues shows ∼102-fold enhanced affinity. A natural carbohydrate decorated form of PSM (Fd-PSM) containing 40% of the core 1 blood group type A tetrasaccharide, and 58% peptide-linked GalNAcα1-O-Ser/Thr residues, with 45% of the peptide-linked α-GalNAc residues linked α-(2,6) to N-glycolylneuraminic acid, shows ∼104 enhanced affinity for SBA. Vatairea macrocarpa lectin (VML), which is also a GalNAc binding lectin, displays a similar pattern of binding to the four forms of PSM, although there are quantitative differences in its affinities as compared with SBA. The higher affinities of SBA and VML for Tn-PSM relative to Fd-PSM indicate the importance of carbohydrate composition and epitope density of mucins on their affinities for lectins. The higher affinities of SBA and VML for Tn-PSM relative to its two shorter chain analogs demonstrate that the length of a mucin polypeptide and hence total carbohydrate valence determines the affinities of the three Tn-PSM analogs. The results suggest a binding model in which lectin molecules “bind and jump” from α-GalNAc residue to α-GalNAc residue along the polypeptide chain of Tn-PSM before dissociating. The complete thermodynamic binding parameters for these mucins including their binding stoichiometries are presented. The results have important implications for the biological activities of mucins including those expressing the Tn cancer antigen.
Journal of Biological Chemistry | 2006
Thomas A. Gerken; Jayalakshmi Raman; Timothy A. Fritz; Oliver Jamison
A large family of UDP-GalNAc:polypeptide α-N-acetylgalactosaminyltransferases (ppGalNAc Ts) catalyzes the first step of mucin-type protein O-glycosylation by transferring GalNAc to serine and threonine residues of acceptor polypeptides. The acceptor peptide substrate specificity and specific protein targets of the individual ppGalNAc T family members remain poorly characterized and poorly understood, despite the fact that mutations in two individual isoforms are deleterious to man and the fly. In this work a series of oriented random peptide substrate libraries, based on the GAGAXXXTXXXAGAGK sequence motif (where X = randomized positions), have been used to obtain the first comprehensive determination of the peptide substrate specificities of the mammalian ppGalNAc T1 and T2 isoforms. ppGalNAc T-glycosylated random peptides were isolated by lectin affinity chromatography, and transferase amino acid preferences were determined by Edman amino acid sequencing. The results reveal common and unique position-sensitive features for both transferases, consistent with previous reports of the preferences of ppGalNAc T1 and T2. The random peptide substrates also reveal additional specific features that have never been described before that are consistent with the x-ray crystal structures of the two transferases and furthermore are reflected in a data base analysis of in vivo O-glycosylation sites. By using the transferase-specific preferences, optimum and selective acceptor peptide substrates have been generated for each transferase. This approach represents a relatively complete, facile, and reproducible method for obtaining ppGalNAc T peptide substrate specificity. Such information will be invaluable for identifying isoform-specific peptide acceptors, creating isoform-specific substrates, and predicting O-glycosylation sites.
Journal of Biological Chemistry | 2008
Jayalakshmi Raman; Timothy A. Fritz; Thomas A. Gerken; Oliver Jamison; David Live; Mian Liu; Lawrence A. Tabak
UDP-GalNAc:polypeptide α-N-Acetylgalactosaminyltransferases (ppGalNAcTs), a family (EC 2.4.1.41) of enzymes that initiate mucin-type O-glycosylation, are structurally composed of a catalytic domain and a lectin domain. Previous studies have suggested that the lectin domain modulates the glycosylation of glycopeptide substrates and may underlie the strict glycopeptide specificity of some isoforms (ppGalNAcT-7 and -10). Using a set of synthetic peptides and glycopeptides based upon the sequence of the mucin, MUC5AC, we have examined the activity and glycosylation site preference of lectin domain deletion and exchange constructs of the peptide/glycopeptide transferase ppGalNAcT-2 (hT2) and the glycopeptide transferase ppGalNAcT-10 (hT10). We demonstrate that the lectin domain of hT2 directs glycosylation site selection for glycopeptide substrates. Pre-steady-state kinetic measurements show that this effect is attributable to two mechanisms, either lectin domain-aided substrate binding or lectin domain-aided product release following glycosylation. We find that glycosylation of peptide substrates by hT10 requires binding of existing GalNAcs on the substrate to either its catalytic or lectin domain, thereby resulting in its apparent strict glycopeptide specificity. These results highlight the existence of two modes of site selection used by these ppGalNAcTs: local sequence recognition by the catalytic domain and the concerted recognition of distal sites of prior glycosylation together with local sequence binding mediated, respectively, by the lectin and catalytic domains. The latter mode may facilitate the glycosylation of serine or threonine residues, which occur in sequence contexts that would not be efficiently glycosylated by the catalytic domain alone. Local sequence recognition by the catalytic domain differs between hT2 and hT10 in that hT10 requires a pre-existing GalNAc residue while hT2 does not.
Glycobiology | 2012
Jayalakshmi Raman; Yu Guan; Cynthia L. Perrine; Thomas A. Gerken; Lawrence A. Tabak
The formation of mucin-type O-glycans is initiated by an evolutionarily conserved family of enzymes, the UDP-N-acetyl-α-D-galactosamine:polypeptide N-acetylgalactosaminyltransferases (GalNAc-Ts). The human genome encodes 20 transferases; 17 of which have been characterized functionally. The complexity of the GalNAc-T family reflects the differential patterns of expression among the individual enzyme isoforms and the unique substrate specificities which are required to form the dense arrays of glycans that are essential for mucin function. We report the expression patterns and enzymatic activity of the remaining three members of the family and the further characterization of a recently reported isoform, GalNAc-T17. One isoform, GalNAcT-16 that is most homologous to GalNAc-T14, is widely expressed (abundantly in the heart) and has robust polypeptide transferase activity. The second isoform GalNAc-T18, most similar to GalNAc-T8, -T9 and -T19, completes a discrete subfamily of GalNAc-Ts. It is widely expressed and has low, albeit detectable, activity. The final isoform, GalNAc-T20, is most homologous to GalNAc-T11 but lacks a lectin domain and has no detectable transferase activity with the panel of substrates tested. We have also identified and characterized enzymatically active splice variants of GalNAc-T13 that differ in the sequence of their lectin domain. The variants differ in their affinities for glycopeptide substrates. Our findings provide a comprehensive view of the complexities of mucin-type O-glycan formation and provide insight into the underlying mechanisms employed to heavily decorate mucins and mucin-like domains with carbohydrate.
Journal of Biological Chemistry | 2009
Cynthia L. Perrine; Anjali S. Ganguli; Peng Wu; Carolyn R. Bertozzi; Timothy A. Fritz; Jayalakshmi Raman; Lawrence A. Tabak; Thomas A. Gerken
Mucin-type O-gly co sy la tion is initiated by a large family of UDP-GalNAc:polypeptide α-N-acetylgalactosaminyltransferases (ppGalNAc Ts) that transfer GalNAc from UDP-GalNAc to the Ser and Thr residues of polypeptide acceptors. Some members of the family prefer previously gly co sylated peptides (ppGalNAc T7 and T10), whereas others are inhibited by neighboring gly co sy la tion (ppGalNAc T1 and T2). Characterizing their peptide and glycopeptide substrate specificity is critical for understanding the biological role and significance of each isoform. Utilizing a series of random peptide and glycopeptide substrates, we have obtained the peptide and glycopeptide specificities of ppGalNAc T10 for comparison with ppGalNAc T1 and T2. For the glycopeptide substrates, ppGalNAc T10 exhibited a single large preference for Ser/Thr-O-GalNAc at the +1 (C-terminal) position relative to the Ser or Thr acceptor site. ppGalNAc T1 and T2 revealed no significant enhancements suggesting Ser/Thr-O-GalNAc was inhibitory at most positions for these isoforms. Against random peptide substrates, ppGalNAc T10 revealed no significant hydrophobic or hydrophilic residue enhancements, in contrast to what has been reported previously for ppGalNAc T1 and T2. Our results reveal that these transferases have unique peptide and glycopeptide preferences demonstrating their substrate diversity and their likely roles ranging from initiating transferases to filling-in transferases.
Journal of Biological Chemistry | 2013
Thomas A. Gerken; Leslie Revoredo; Joseph J. C. Thome; Lawrence A. Tabak; Malene Bech Vester-Christensen; Henrik Clausen; Gagandeep Gahlay; Donald L. Jarvis; Roy W. Johnson; Heather A. Moniz; Kelley W. Moremen
Background: ppGalNAc transferases, which initiate O-glycosylation, possess a poorly understood lectin domain. Results: The lectin domain directs glycosylation in an N- or C- terminal direction in an isoform-specific manner. Conclusion: Unanticipated isoform-specific directionality was revealed for modification of glycopeptide substrates. Significance: A novel mechanism of controlling of mucin type O-glycosylation has been discovered based on tethered lectin domains specifying N- or C-terminal modification of glycopeptide substrates. Mucin type O-glycosylation is initiated by a large family of polypeptide GalNAc transferases (ppGalNAc Ts) that add α-GalNAc to the Ser and Thr residues of peptides. Of the 20 human isoforms, all but one are composed of two globular domains linked by a short flexible linker: a catalytic domain and a ricin-like lectin carbohydrate binding domain. Presently, the roles of the catalytic and lectin domains in peptide and glycopeptide recognition and specificity remain unclear. To systematically study the role of the lectin domain in ppGalNAc T glycopeptide substrate utilization, we have developed a series of novel random glycopeptide substrates containing a single GalNAc-O-Thr residue placed near either the N or C terminus of the glycopeptide substrate. Our results reveal that the presence and N- or C-terminal placement of the GalNAc-O-Thr can be important determinants of overall catalytic activity and specificity that differ between transferase isoforms. For example, ppGalNAc T1, T2, and T14 prefer C-terminally placed GalNAc-O-Thr, whereas ppGalNAc T3 and T6 prefer N-terminally placed GalNAc-O-Thr. Several transferase isoforms, ppGalNAc T5, T13, and T16, display equally enhanced N- or C-terminal activities relative to the nonglycosylated control peptides. This N- and/or C-terminal selectivity is presumably due to weak glycopeptide binding to the lectin domain, whose orientation relative to the catalytic domain is dynamic and isoform-dependent. Such N- or C-terminal glycopeptide selectivity provides an additional level of control or fidelity for the O-glycosylation of biologically significant sites and suggests that O-glycosylation may in some instances be exquisitely controlled.