Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas A. Kufer is active.

Publication


Featured researches published by Thomas A. Kufer.


Nature Immunology | 2011

NLR functions in plant and animal immune systems: so far and yet so close.

Takaki Maekawa; Thomas A. Kufer; Paul Schulze-Lefert

In plants and animals, the NLR family of receptors perceives non-self and modified-self molecules inside host cells and mediates innate immune responses to microbial pathogens. Despite their similar biological functions and protein architecture, animal NLRs are normally activated by conserved microbe- or damage-associated molecular patterns, whereas plant NLRs typically detect strain-specific pathogen effectors. Plant NLRs recognize either the effector structure or effector-mediated modifications of host proteins. The latter indirect mechanism for the perception of non-self, as well as the within-species diversification of plant NLRs, maximize the capacity to recognize non-self through the use of a finite number of innate immunoreceptors. We discuss recent insights into NLR activation, signal initiation through the homotypic association of N-terminal domains and subcellular receptor dynamics in plants and compare those with NLR functions in animals.


PLOS ONE | 2008

Dendritic cells release HLA-B-associated transcript-3 positive exosomes to regulate natural killer function.

Venkateswara Rao Simhadri; Katrin S. Reiners; Hinrich P. Hansen; Daniela Topolar; Vijaya Lakshmi Simhadri; Klaus Nohroudi; Thomas A. Kufer; Andreas Engert; Elke Pogge von Strandmann

NKp30, a natural cytotoxicity receptor expressed on NK cells is critically involved in direct cytotoxicity against various tumor cells and directs both maturation and selective killing of dendritic cells. Recently the intracellular protein BAT3, which is involved in DNA damage induced apoptosis, was identified as a ligand for NKp30. However, the mechanisms underlying the exposure of the intracellular ligand BAT3 to surface NKp30 and its role in NK-DC cross talk remained elusive. Electron microscopy and flow cytometry demonstrate that exosomes released from 293T cells and iDCs express BAT3 on the surface and are recognized by NKp30-Ig. Overexpression and depletion of BAT3 in 293T cells directly correlates with the exosomal expression level and the activation of NK cell-mediated cytokine release. Furthermore, the NKp30-mediated NK/DC cross talk resulting either in iDC killing or maturation was BAT3-dependent. Taken together this puts forward a new model for the activation of NK cells through intracellular signals that are released via exosomes from accessory cells. The manipulation of the exosomal regulation may offer a novel strategy to induce tumor immunity or inhibit autoimmune diseases caused by NK cell-activation.


Nature Immunology | 2011

NLR functions beyond pathogen recognition

Thomas A. Kufer; Philippe J. Sansonetti

The last 10 years have witnessed the identification of a new class of intracellular pattern-recognition molecules—the nucleotide-binding domain and leucine-rich repeat–containing family (NLR). Members of this family garnered interest as pattern-recognition receptors able to trigger inflammatory responses against pathogens. Many studies support a pathogen-recognition function for human NLR proteins and shed light on their role in the broader control of adaptive immunity and various disease states. Other evidence suggests that NLRs function in processes unrelated to pathogen detection. Here we discuss recent advances in our understanding of the biology of the human NLR proteins and their non-pathogen-recognition function in tissue homeostasis, apoptosis, graft-versus-host disease and early development.


Journal of Immunology | 2009

Helicobacter pylori Induces MAPK Phosphorylation and AP-1 Activation via a NOD1-Dependent Mechanism

Cody Allison; Thomas A. Kufer; Elisabeth Kremmer; Maria Kaparakis; Richard L. Ferrero

Helicobacter pylori rapidly activates MAPKs and transcription factors, NF-κB and AP-1, in gastric epithelial cells following host attachment. Activation of these signal transducers is largely dependent on the cag pathogenicity island (cagPAI)-encoded Type IV Secretion System. H. pylori was shown to translocate peptidoglycan through the Type IV Secretion System, which is recognized by the pathogen recognition molecule, NOD1, thus resulting in NF-κB activation. The mechanisms of H. pylori-induced MAPK and AP-1 activation, however, are less well defined and therefore, we assessed the contribution of NOD1 to their activation. For this, we used gastric epithelial cell lines, stably expressing siRNA to either NOD1 or a control gene. In siNOD1-expressing cells stimulated with cagPAI+ H. pylori, we observed significant reductions in p38 and ERK phosphorylation (p < 0.05), whereas the levels of Jnk phosphorylation remained unchanged. Consistent with a previous report, however, we were able to demonstrate NOD1-dependent Jnk phosphorylation by the invasive pathogen Shigella flexneri, highlighting pathogen-specific host responses to infection. We also show that NOD1 was essential for H. pylori induction of not only NF-κB, but also AP-1 activation, implying that NOD1 induces robust proinflammatory responses, in an attempt to rapidly control infection. Pharmacological inhibition of p38 and ERK activity significantly reduced IL-8 production in response to H. pylori, further emphasizing the importance of MAPKs in innate immune responses to the pathogen. Thus, for the first time we have shown the important role for NOD1 in MAPK and AP-1 activation in response to cagPAI+ H. pylori.


Journal of Biological Chemistry | 2010

A Role for the Human Nucleotide-binding Domain, Leucine-rich Repeat-containing Family Member NLRC5 in Antiviral Responses

Andreas Neerincx; Katja Lautz; Maureen Menning; Elisabeth Kremmer; Paola Zigrino; Marianna Hösel; Hildegard Büning; Robert Schwarzenbacher; Thomas A. Kufer

Proteins of the nucleotide-binding domain, leucine-rich repeat (NLR)-containing family recently gained attention as important components of the innate immune system. Although over 20 of these proteins are present in humans, only a few members including the cytosolic pattern recognition receptors NOD1, NOD2, and NLRP3 have been analyzed extensively. These NLRs were shown to be pivotal for mounting innate immune response toward microbial invasion. Here we report on the characterization of human NLRC5 and provide evidence that this NLR has a function in innate immune responses. We found that NLRC5 is a cytosolic protein expressed predominantly in hematopoetic cells. NLRC5 mRNA and protein expression was inducible by the double-stranded RNA analog poly(I·C) and Sendai virus. Overexpression of NLRC5 failed to trigger inflammatory responses such as the NF-κB or interferon pathways in HEK293T cells. However, knockdown of endogenous NLRC5 reduced Sendai virus- and poly(I·C)-mediated type I interferon pathway-dependent responses in THP-1 cells and human primary dermal fibroblasts. Taken together, this defines a function for NLRC5 in anti-viral innate immune responses.


Journal of Immunology | 2012

NLRC5 Controls Basal MHC Class I Gene Expression in an MHC Enhanceosome-Dependent Manner

Andreas Neerincx; Galaxia M. Rodriguez; Viktor Steimle; Thomas A. Kufer

Nucleotide-binding domain and leucine-rich repeat (NLR) proteins play important roles in innate immune responses as pattern-recognition receptors. Although most NLR proteins act in cell autonomous immune pathways, some do not function as classical pattern-recognition receptors. One such NLR protein is the MHC class II transactivator, the master regulator of MHC class II gene transcription. In this article, we report that human NLRC5, which we recently showed to be involved in viral-mediated type I IFN responses, shuttles to the nucleus and activates MHC class I gene expression. Knockdown of NLRC5 in different human cell lines and primary dermal fibroblasts leads to reduced MHC class I expression, whereas introduction of NLRC5 into cell types with very low expression of MHC class I augments MHC class I expression to levels comparable to those found in lymphocytes. Expression of NLRC5 positively correlates with MHC class I expression in human tissues. Functionally, we show that both the N-terminal effector domain of NLRC5 and its C-terminal leucine-rich repeat domain are needed for activation of MHC class I expression. Moreover, nuclear shuttling and function depend on a functional Walker A motif. Finally, we identified a promoter sequence in the MHC class I promoter, the X1 box, to be involved in NLRC5-mediated MHC class I gene activation. Taken together, this suggested that NLRC5 acts in a manner similar to class II transactivator to drive MHC expression and revealed NLRC5 as an important regulator of basal MHC class I expression.


PLOS ONE | 2009

Evaluation of Nod-Like Receptor (NLR) Effector Domain Interactions

Roland N. Wagner; Martina Proell; Thomas A. Kufer; Robert Schwarzenbacher

Members of the Nod-like receptor (NLR) family recognize intracellular pathogens and recruit a variety of effector molecules, including pro-caspases and kinases, which in turn are implicated in cytokine processing and NF-κB activation. In order to elucidate the intricate network of NLR signaling, which is still fragmentary in molecular terms, we applied comprehensive yeast two-hybrid analysis for unbiased evaluation of physical interactions between NLRs and their adaptors (ASC, CARD8) as well as kinase RIPK2 and inflammatory caspases (C1, C2, C4, C5) under identical conditions. Our results confirmed the interaction of NOD1 and NOD2 with RIPK2, and between NLRP3 and ASC, but most importantly, our studies revealed hitherto unrecognized interactions of NOD2 with members of the NLRP subfamily. We found that NOD2 specifically and directly interacts with NLRP1, NLRP3 and NLRP12. Furthermore, we observed homodimerization of the RIPK2 CARD domains and identified residues in NOD2 critical for interaction with RIPK2. In conclusion, our work provides further evidence for the complex network of protein-protein interactions underlying NLR function.


Infection and Immunity | 2011

NOD-Like Receptor Activation by Outer Membrane Vesicles from Vibrio cholerae Non-O1 Non-O139 Strains Is Modulated by the Quorum-Sensing Regulator HapR

Harald Bielig; Pramod Kumar Rompikuntal; Mitesh Dongre; Birte Zurek; B. Lindmark; M. Ramstedt; Sun Nyunt Wai; Thomas A. Kufer

ABSTRACT Vibrio cholerae is an inhabitant of aquatic systems and one of the causative agents of severe dehydrating diarrhea in humans. It has also emerged as an important cause of different kinds of inflammatory responses, and in particular, V. cholerae strains of the non-O1 non-O139 serogroups (NOVC) have been associated with such infections in human. We analyzed the potential of outer membrane vesicles (OMVs) derived from the NOVC strain V:5/04 to induce inflammatory responses in human host cells. V:5/04 OMVs were taken up by human epithelial cells and induced inflammatory responses. Small interfering RNA (siRNA)-mediated gene knockdown revealed that the inflammatory potential of NOVC OMVs was partially mediated by the nucleotide-binding domain-, leucine-rich repeat-containing family member NOD1. Physiochemical analysis of the content of these OMVs, in conjunction with NOD1 and NOD2 reporter assays in HEK293T cells, confirmed the presence of both NOD1 and NOD2 active peptidoglycan in the OMVs. Furthermore, we show that deletion of the quorum-sensing regulator HapR, which mimics an infective life style, specifically reduced the inflammatory potential of the V:5/04 OMVs and their ability to activate NOD1 and NOD2. In conclusion, our study shows that NOVC OMVs elicit immune responses mediated by NOD1 and NOD2 in mammalian host cells. Moreover, we provide evidence that the quorum-sensing machinery plays an important regulatory role in this process by attenuating the inflammatory potential of OMVs under infective conditions. This work thus identifies a new facet of how Vibrio affects host immune responses and defines a role for the quorum-sensing machinery in this process.


PLOS ONE | 2012

TRIM27 Negatively Regulates NOD2 by Ubiquitination and Proteasomal Degradation

Birte Zurek; Ida Schoultz; Andreas Neerincx; Luisa M. Napolitano; Katharina Birkner; Eveline Bennek; Gernot Sellge; Maria Lerm; Germana Meroni; Johan D. Söderholm; Thomas A. Kufer

NOD2, the nucleotide-binding domain and leucine-rich repeat containing gene family (NLR) member 2 is involved in mediating antimicrobial responses. Dysfunctional NOD2 activity can lead to severe inflammatory disorders, but the regulation of NOD2 is still poorly understood. Recently, proteins of the tripartite motif (TRIM) protein family have emerged as regulators of innate immune responses by acting as E3 ubiquitin ligases. We identified TRIM27 as a new specific binding partner for NOD2. We show that NOD2 physically interacts with TRIM27 via the nucleotide-binding domain, and that NOD2 activation enhances this interaction. Dependent on functional TRIM27, ectopically expressed NOD2 is ubiquitinated with K48-linked ubiquitin chains followed by proteasomal degradation. Accordingly, TRIM27 affects NOD2-mediated pro-inflammatory responses. NOD2 mutations are linked to susceptibility to Crohns disease. We found that TRIM27 expression is increased in Crohns disease patients, underscoring a physiological role of TRIM27 in regulating NOD2 signaling. In HeLa cells, TRIM27 is partially localized in the nucleus. We revealed that ectopically expressed NOD2 can shuttle to the nucleus in a Walker A dependent manner, suggesting that NOD2 and TRIM27 might functionally cooperate in the nucleus. We conclude that TRIM27 negatively regulates NOD2-mediated signaling by degradation of NOD2 and suggest that TRIM27 could be a new target for therapeutic intervention in NOD2-associated diseases.


Innate Immunity | 2012

Mutational analysis of human NOD1 and NOD2 NACHT domains reveals different modes of activation.

Birte Zurek; Martina Proell; Roland N. Wagner; Robert Schwarzenbacher; Thomas A. Kufer

Nucleotide-binding oligomerization domain-containing protein (NOD)1 and NOD2 are intracellular pattern recognition receptors (PRRs) of the nucleotide-binding domain and leucine-rich repeat containing (NLR) gene family involved in innate immune responses. Their centrally located NACHT domain displays ATPase activity and is necessary for activation and oligomerization leading to inflammatory signaling responses. Mutations affecting key residues of the ATPase domain of NOD2 are linked to severe auto-inflammatory diseases, such as Blau syndrome and early-onset sarcoidosis. By mutational dissection of the ATPase domain function, we show that the NLR-specific extended Walker B box (DGhDE) can functionally replace the canonical Walker B sequence (DDhWD) found in other ATPases. A requirement for an intact Walker A box and the magnesium-co-ordinating aspartate of the classical Walker B box suggest that an initial ATP hydrolysis step is necessary for activation of both NOD1 and NOD2. In contrast, a Blau-syndrome associated mutation located in the extended Walker B box of NOD2 that results in higher autoactivation and ligand-induced signaling does not affect NOD1 function. Moreover, mutation of a conserved histidine in the NACHT domain also has contrasting effects on NOD1 and NOD2 mediated NF-κB activation. We conclude that these two NLRs employ different modes of activation and propose distinct models for activation of NOD1 and NOD2.

Collaboration


Dive into the Thomas A. Kufer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Damm

University of Cologne

View shared research outputs
Top Co-Authors

Avatar

Elisabeth Kremmer

German Center for Neurodegenerative Diseases

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard L. Ferrero

Hudson Institute of Medical Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge