Thomas A. Manteuffel
University of Colorado Boulder
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Thomas A. Manteuffel.
SIAM Journal on Numerical Analysis | 1994
Zhiqiang Cai; Raytcho D. Lazarov; Thomas A. Manteuffel; Steve McCormick
This paper develops a least-squares functional that arises from recasting general second-order uniformly elliptic partial differential equations in
Numerische Mathematik | 1977
Thomas A. Manteuffel
n=2
SIAM Journal on Numerical Analysis | 1984
Vance Faber; Thomas A. Manteuffel
or
SIAM Journal on Numerical Analysis | 1990
Steven F. Ashby; Thomas A. Manteuffel; Paul E. Saylor
3
Mathematics of Computation | 1986
Thomas A. Manteuffel; Andrew B. White
dimensions as a system of first-order equations. In part I [Z. Cai, R. D. Lazarov, T. Manteuffel, and S. McCormick, SIAM J. Numer. Anal., 31 (1994), pp. 1785--1799] a similar functional was developed and shown to be elliptic in the
SIAM Journal on Numerical Analysis | 1997
Zhiqiang Cai; Thomas A. Manteuffel; Stephen F. McCormick
H(\divv) \times H^1
SIAM Journal on Scientific Computing | 1999
Andrew J. Cleary; Robert D. Falgout; Van Emden Henson; Jim E. Jones; Thomas A. Manteuffel; Stephen F. McCormick; Gerald N. Miranda; John W. Ruge
norm and to yield optimal convergence for finite element subspaces of
Numerische Mathematik | 1978
Thomas A. Manteuffel
H(\divv) \times H^1
Mathematics of Computation | 1986
H.-O. Kreiss; Thomas A. Manteuffel; B. Swartz; Burton Wendroff; Andrew B. White
. In this paper the functional is modified by adding a compatible constraint and imposing additional boundary conditions on the first-order system. The resulting functional is proved to be elliptic in the
SIAM Journal on Numerical Analysis | 1998
Pavel B. Bochev; Zhiqiang Cai; Thomas A. Manteuffel; Stephen F. McCormick
(H^1)^{n+1}